Skip to main content
Log in

Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg–de Vries equation in fluids

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a generalized variable-coefficient forced Korteweg–de Vries equation, which can describe the shallow-water waves, internal gravity waves, and so on. With symbolic computation, the soliton solutions in the Wronskian form are derived based on the given bilinear form. Bäcklund transformation and Lax pair for such equation are also constructed. Variable coefficients and parameters of three solitons are managed to observe the features of the solitonic propagation and interaction, e.g., the solitonic velocity, amplitude and background. Our results could be expected to benefit the relevant problems in fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A.: Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Visual Sci. 2, 75–83 (1999)

    Article  MATH  Google Scholar 

  2. Qlufsen, M.: A one-dimensional fluid dynamic model of the systemic arteries. Stud. Health Technol. Inform. 71, 79–97 (2000)

    Google Scholar 

  3. Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Visual Sci. 2, 163–197 (2000)

    Article  MATH  Google Scholar 

  4. Zamir, M.: The Physics of Pulsatile Flow. Springer, New York (2000)

    MATH  Google Scholar 

  5. Demiray, H.: The effect of a bump on wave propagation in a fluid-filled elastic tube. Int. J. Eng. Sci. 42, 203–215 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Holloway, P., Pelinovsky, E., Talipova, T.: A generalized Korteweg–de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res. C 104, 18333–18350 (1999)

    Article  Google Scholar 

  7. Grimshaw, R.H.J.: Long nonlinear waves in channels of arbitrary cross section. J. Fluid Mech. 86, 415–451 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ei, G.A., Grimshaw, R.H.J.: Generation of undular bores in the shelves of slowly-varying solitary waves. Chaos 12, 1015–1026 (2002)

    Article  MathSciNet  Google Scholar 

  9. Huang, G.X., Szeftel, J., Zhu, S.H.: Dynamics of dark solitons in quasi-one-dimensional Bose–Einstein condensates. Phys. Rev. A 65, 053605 (2002)

    Article  Google Scholar 

  10. Dai, H.H., Huo, Y.: Solitary waves in an inhomogeneous rod composed of a general hyperelastic material. Wave Motion 35, 55–69 (2002)

    Article  MATH  Google Scholar 

  11. Tang, X.Y., Gao, Y., Huang, F., Lou, S.Y.: Variable coefficient nonlinear systems derived from an atmospheric dynamical system. Chin. Phys. B 18, 4622–4635 (2009)

    Article  Google Scholar 

  12. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg–de Vries equation in fluids. Phys. Rev. E (2011, in press)

  13. Zhang, C.Y., Yao, Z.Z., Zhu, H.W., Xu, T., Li, J., Meng, X.H., Gao, Y.T.: Exact analytic N-soliton-like solution in Wronskian form for a generalized variable-coefficient Korteweg–de Vries model from plasmas and fluid dynamics. Chin. Phys. Lett. 24, 1173–1176 (2007)

    Article  Google Scholar 

  14. Tian, B., Wei, G.M., Zhang, C.Y., Shan, W.R., Gao, Y.T.: Transformations for a generalized variable-coefficient Korteweg–de Vries model from blood vessels, Bose–Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A 356, 8–16 (2006)

    Article  MATH  Google Scholar 

  15. Li, J., Tian, B., Meng, X.H., Xu, T., Zhang, C.Y., Zhang, Y.X.: Variable-coefficient Miura transformations and integrable properties for a generalized variable-coefficient Korteweg–de Vries equation from Bose–Einstein condensates with symbolic computation. Int. J. Mod. Phys. B 23, 571–584 (2009)

    Article  MATH  Google Scholar 

  16. Hong, W.P.: Comment on: “Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation”. Phys. Lett. A 361, 520–522 (2007)

    Article  MATH  Google Scholar 

  17. Tian, B., Gao, Y.T.: Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves. Phys. Plasmas (Lett.) 12, 070703 (2005)

    Article  MathSciNet  Google Scholar 

  18. Tian, B., Gao, Y.T.: Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation. Eur. Phys. J. D 33, 59–65 (2005)

    Article  Google Scholar 

  19. Tian, B., Gao, Y.T.: Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 243–250 (2005)

    Article  MATH  Google Scholar 

  20. Tian, B., Gao, Y.T.: Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas. Phys. Lett. A 362, 283–288 (2007)

    Article  MATH  Google Scholar 

  21. Barnett, M.P., Capitani, J.F., Von Zur Gathen, J., Gerhard, J.: Symbolic calculation in chemistry: selected examples. Int. J. Quant. Chem. 100, 80–104 (2004)

    Article  Google Scholar 

  22. Gao, Y.T., Tian, B.: Cosmic dust-ion-acoustic waves spherical modified Kadomtsev–Petviashvili model, and symbolic computation. Phys. Plasmas 13, 112901 (2006)

    Article  Google Scholar 

  23. Gao, Y.T., Tian, B.: (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation. Phys. Plasmas (Lett.) 13, 120703 (2006)

    Article  Google Scholar 

  24. Gao, Y.T., Tian, B.: On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations. Europhys. Lett. 77, 15001 (2007)

    Article  Google Scholar 

  25. Gao, Y.T., Tian, B.: Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves. Phys. Lett. A 349, 314–319 (2006)

    Article  Google Scholar 

  26. Gao, Y.T., Tian, B.: Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361, 520 (2007)]. Phys. Lett. A 361, 523–528 (2007)

    Article  MATH  Google Scholar 

  27. Liu, W.J., Tian, B., Zhang, H.Q., Li, L.L., Xue, Y.S.: Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota’s bilinear method. Phys. Rev. E 77, 066605 (2008)

    Article  MathSciNet  Google Scholar 

  28. Liu, W.J., Tian, B., Zhang, H.Q.: Types of solutions of the variable-coefficient nonlinear Schrödinger equation with symbolic computation. Phys. Rev. E 78, 066613 (2008)

    Article  MathSciNet  Google Scholar 

  29. Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)

    Article  Google Scholar 

  30. Liu, W.J., Tian, B., Xu, T., Sun, K., Jiang, Y.: Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: soliton interaction and soliton control. Ann. Phys. 325, 1633–1644 (2010)

    Article  MATH  Google Scholar 

  31. Xu, T., Tian, B., Li, L.L., Lü, X., Zhang, C.: Dynamics of Alfvén solitons in inhomogeneous plasmas. Phys. Plasmas 15, 102307 (2008)

    Article  Google Scholar 

  32. Xu, T., Tian, B.: Bright N-soliton solutions in terms of the triple Wronskian for the coupled nonlinear Schrödinger equations in optical fibers. J. Phys. A 43, 245205 (2010)

    Article  MathSciNet  Google Scholar 

  33. Xu, T., Tian, B.: An extension of the Wronskian technique for the multicomponent Wronskian solution to the vector nonlinear Schrödinger equation. J. Math. Phys. 51, 033504 (2010)

    Article  MathSciNet  Google Scholar 

  34. Zhang, H.Q., Xu, T., Li, J., Tian, B.: Integrability of an N-coupled nonlinear Schrödinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E 77, 026605 (2008)

    Article  MathSciNet  Google Scholar 

  35. Zhang, H.Q., Tian, B., Lü, X., Li, H., Meng, X.H.: Soliton interaction in the coupled mixed derivative nonlinear Schrödinger equations. Phys. Lett. A 373, 4315–4321 (2009)

    Article  MathSciNet  Google Scholar 

  36. Zhang, H.Q., Tian, B., Xu, T., Li, H., Zhang, C., Zhang, H.: Lax pair and Darboux transformation for multi-component modified Korteweg–de Vries equations. J. Phys. A 41, 355210 (2008)

    Article  MathSciNet  Google Scholar 

  37. Zhang, H.Q., Tian, B., Meng, X.H., Lü, X., Liu, W.J.: Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation. Eur. Phys. J. B 72, 233–239 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  39. Satsuma, J.: N-soliton solution of the two-dimensional Korteweg–de Vries equation. J. Phys. Soc. Jpn. 40, 286–290 (1976)

    Article  MathSciNet  Google Scholar 

  40. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  41. Freeman, N.C., Nimmo, J.J.: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983)

    Article  MathSciNet  Google Scholar 

  42. Nimmo, J.J., Freeman, N.C.: A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95, 4–6 (1983)

    Article  MathSciNet  Google Scholar 

  43. Nimmo, J.J., Freeman, N.C.: Rational solutions of the Korteweg–de Vries equation in Wronskian form. Phys. Lett. A 96, 443–446 (1983)

    Article  MathSciNet  Google Scholar 

  44. Ma, W.X., You, Y.C.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357, 1753–1778 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ma, W.X.: Complexiton solutions to integrable equations. Nonlinear Anal. 63, e2461–e2471 (2005)

    Article  MATH  Google Scholar 

  46. Ma, W.X., Li, C.X., He, J.S.: A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal. 70, 4245–4258 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg–de Vries equation. Phys. Scr. 81, 045402 (2010)

    Article  Google Scholar 

  48. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, W.J., Liu, Y.: Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. Phys. Rev. E 80, 066608 (2009)

    Article  Google Scholar 

  49. Sun, Z.Y., Gao, Y.T., Yu, X., Meng, X.H., Liu, Y.: Inelastic interactions of the multiple-front waves for the modified Kadomtsev–Petviashvili equation in fluid dynamics, plasma physics and electrodynamics. Wave Motion 46, 511–521 (2009)

    Article  MathSciNet  Google Scholar 

  50. Liu, Y., Gao, Y.T., Xu, T., Lü, X., Sun, Z.Y., Meng, X.H., Yu, X., Gai, X.L.: Soliton solution, Bäcklund transformation, and conservation laws for the Sasa–Satsuma equation in the optical fiber communications. Z. Naturforsch. 65a, 291–300 (2010)

    Google Scholar 

  51. Ma, W.X., Maruno, K.I.: Complexiton solutions of the Toda lattice equation. Physica A 343, 219–237 (2004)

    MathSciNet  Google Scholar 

  52. Ma, W.X.: An application of the Casoratian technique to the 2D Toda lattice equation. Mod. Phys. Lett. B 22, 1815–1825 (2008)

    Article  MATH  Google Scholar 

  53. Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950–959 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Ma, W.X., Bullough, R.K., Caudrey, P.J.: Graded symmetry algebras of time-dependent evolution equations and application to the modified KP equations. J. Nonlinear Math. Phys. 4, 293–309 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Gao, YT., Sun, ZY. et al. Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg–de Vries equation in fluids. Nonlinear Dyn 67, 1023–1030 (2012). https://doi.org/10.1007/s11071-011-0044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0044-0

Keywords

Navigation