Skip to main content
Log in

General multi-soliton and higher-order soliton solutions for a novel nonlocal Lakshmanan–Porsezian–Daniel equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The inverse scattering transformation for a novel nonlocal Lakshmanan–Porsezian–Daniel (LPD) equation with rapidly decaying initial data is studied in the framework of Riemann–Hilbert problem. Firstly, a novel integrable nonlocal LPD equation corresponding to a \(3\times 3\) Lax pair is proposed. Secondly, the inverse scattering process with a novel left-right \(3\times 3\) matrix Riemann–Hilbert(RH) problem is constructed. The analytical properties and symmetry relations for the Jost functions and scattering data are considerably different from the local ones. Due to the special symmetry properties for the nonlocal LPD equation, the zeros of the RHP problem are purely imaginary or occur in pairs. With different types and configuration of zeros, the soliton formula is provided and the rich dynamical behaviors for the three kinds of multi-solitons for the novel nonlocal LPD equation are demonstrated. Third, by a technique of adding perturbed parameters and limiting process, the formula of higher-order solitons for the nonlocal LPD equation is exhibited. Lastly, the plots of diverse higher-order solitons and various solutions corresponding to different combinations of the following zeros: purely imaginary higher-order zeros, purely imaginary simple zeros, pairs of non-purely imaginary simple zeros and pairs of non-purely imaginary higher-order zeros are displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kano, T.: Normal form of nonlinear Schrödinger equation. J. Phys. Soc. Jap. 58(12), 4322–4328 (1989). https://doi.org/10.1143/JPSJ.58.4322

    Article  Google Scholar 

  2. Ankiewicz, A., Wang, Y., Wabnitz, S., Akhmediev, N.: Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys. Rev. E 89(1), 012907 (2014). https://doi.org/10.1103/PhysRevE.89.012907

    Article  Google Scholar 

  3. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93(1), 012206 (2016). https://doi.org/10.1103/PhysRevE.93.012206

    Article  MathSciNet  Google Scholar 

  4. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133(9), 483–488 (1988). https://doi.org/10.1016/0375-9601(88)90520-8

    Article  Google Scholar 

  5. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33(5), 1807–1816 (1992). https://doi.org/10.1063/1.529658

    Article  MathSciNet  MATH  Google Scholar 

  6. Biswas, A., Yildirim, Y., Yasar, E., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical solitons for Lakshmanan-Porsezian-Daniel model by modified simple equation method. Optik 160, 24–32 (2018). https://doi.org/10.1016/j.ijleo.2018.01.100

    Article  Google Scholar 

  7. Rezazadeh, H., Mirzazadeh, M., Mirhosseini-Alizamini, S.M., Neirameh, A., Eslami, M., Zhou, Q.: Optical solitons of Lakshmanan-Porsezian-Daniel model with a couple of nonlinearities. Optik 164, 414–423 (2018). https://doi.org/10.1016/j.ijleo.2018.03.039

    Article  Google Scholar 

  8. Yepez-Martinez, H., Gomez-Aguilar, J.F.: M-derivative applied to the soliton solutions for the Lakshmanan-Porsezian-Daniel equation with dual-dispersion for optical fibers. Opt. Quant. Electron. (2019). https://doi.org/10.1007/s11082-018-1740-5

    Article  Google Scholar 

  9. Rezazadeh, H., Kumar, D., Neirameh, A., Eslami, M., Mirzazadeh, M.: Applications of three methods for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model with Kerr law nonlinearity. Pramana-J. Phys. (2020). https://doi.org/10.1007/s12043-019-1881-5

    Article  Google Scholar 

  10. Akram, G., Sadaf, M., Khan, M.A.U.: Abundant optical solitons for Lakshmanan-Porsezian-Daniel model by the modified auxiliary equation method. Optik (2022). https://doi.org/10.1016/j.ijleo.2021.168163

    Article  Google Scholar 

  11. Tariq, K.U., Wazwaz, A.M., Ahmed, A.: On some optical soliton structures to the Lakshmanan-Porsezian-Daniel model with a set of nonlinearities. Opt. Quant. Electron. (2022). https://doi.org/10.1007/s11082-022-03830-5

    Article  Google Scholar 

  12. Peng, C., Li, Z., Zhao, H.: New exact solutions to the Lakshmanan-Porsezian-Daniel equation with kerr law of nonlinearity. Math. Probl. Eng. (2022). https://doi.org/10.1155/2022/7340373

    Article  Google Scholar 

  13. Sun, W.R.: Vector solitons and rogue waves of the matrix Lakshmanan-Porsezian-Daniel equation. Nonlinear Dyn. 102(3), 1743–1751 (2020). https://doi.org/10.1007/s11071-020-05993-w

    Article  Google Scholar 

  14. Weng, W.F., Zhang, G.Q., Yan, Z.Y.: Strong and weak interactions of rational vector rogue waves and solitons to any n-component nonlinear Schrödinger system with higher-order effects. P. Roy. Soc. A-Math. Phy. (2022). https://doi.org/10.1098/rspa.2021.0670

    Article  Google Scholar 

  15. Xu, T., He, G.: Higher-order interactional solutions and rogue wave pairs for the coupled Lakshmanan-Porsezian-Daniel equations. Nonlinear Dyn. 98(3), 1731–1744 (2019). https://doi.org/10.1007/s11071-019-05282-1

    Article  MATH  Google Scholar 

  16. Hu, B.B., Lin, J., Zhang, L.: Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan-Porsezian-Daniel model. Nonlinear Dyn. 107(3), 2773–2785 (2022). https://doi.org/10.1007/s11071-021-07135-2

    Article  Google Scholar 

  17. Hu, B., Lin, J., Zhang, L.: Riemann-Hilbert problem associated with the vector Lakshmanan-Porsezian-Daniel model in the birefringent optical fibers. Math. Method Appl. Sci. (2022). https://doi.org/10.1002/mma.8465

    Article  MathSciNet  Google Scholar 

  18. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear schrödinger equation. Phys. Rev. Lett. 110(6), 1–5 (2013). https://doi.org/10.1103/PhysRevLett.110.064105

    Article  Google Scholar 

  19. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29(3), 915–946 (2016). https://doi.org/10.1088/0951-7715/29/3/915

    Article  MathSciNet  MATH  Google Scholar 

  20. Ablowitz, M.J., Musslimani, Z.H.: Integrable Nonlocal Nonlinear Equations. Stud. Appl. Math. 139 (1), 7–59 (2017) arXiv:1610.02594. https://doi.org/10.1111/sapm.12153

  21. Yan, Z.: Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model. Appl. Math. Lett. 47, 61–68 (2015). https://doi.org/10.1016/j.aml.2015.02.025

    Article  MathSciNet  MATH  Google Scholar 

  22. Yan, Z.: Nonlocal general vector nonlinear Schrödinger equations: Integrability, PT symmetribility, and solutions. Appl. Math. Lett. 62, 101–109 (2016) arXiv:1611.07795. https://doi.org/10.1016/j.aml.2016.07.010

  23. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de Vries equation: Integrability, darboux transformation and soliton solutions. Commun. Nonlinear Sci. 42, 699–708 (2017). https://doi.org/10.1016/j.cnsns.2016.06.015

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, W.X.: Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations. Appl. Math. Lett. 102, 106161 (2020). https://doi.org/10.1016/j.aml.2019.106161

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, M.M., Chen, Y.: Dynamic behaviors of general n-solitons for the nonlocal generalized nonlinear Schrödinger equation. Nonlinear Dyn. 104(3), 2621–2638 (2021). https://doi.org/10.1007/s11071-021-06421-3

    Article  Google Scholar 

  26. Wen, X.Y., Wang, H.T.: Breathing-soliton and singular rogue wave solutions for a discrete nonlocal coupled Ablowitz-Ladik equation of reverse-space type. Appl. Math. Lett. 111, 106683 (2021). https://doi.org/10.1016/j.aml.2020.106683

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Y., Peng, W.Q.: N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann-Hilbert method and pinn algorithm. Phys. D 435, 133274 (2022). https://doi.org/10.1016/j.physd.2022.133274

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Y., Dong, H.H.: N-soliton solutions to the multi-component nonlocal gerdjikov-ivanov equation via Riemann-Hilbert problem with zero boundary conditions. Appl. Math. Lett. 125, 107770 (2022). https://doi.org/10.1016/j.aml.2021.107770

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, H.J., Chen, Y.: Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation. Nonlinear Dyn. 106, 3437–3451 (2021). https://doi.org/10.1007/s11071-021-06953-8

    Article  Google Scholar 

  30. Zhang, W.X., Liu, Y.Q.: Integrability and multisoliton solutions of the reverse space and/or time nonlocal Fokas-Lenells equation. Nonlinear Dyn. 108(3), 2531–2549 (2022)

    Article  Google Scholar 

  31. Wu, J.P.: A novel reduction approach to obtain N-soliton solutions of a nonlocal nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn. 106, 775–781 (2021)

    Article  Google Scholar 

  32. Wu, J.P.: Riemann-Hilbert approach and soliton classification for a nonlocal integrable nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn. 107, 1127–1139 (2022)

    Article  Google Scholar 

  33. Wang, M.M., Chen, Y.: Novel solitons and higher-order solitons for the nonlocal generalized Sasa-Satsuma equation of reverse-space-time type. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07663-5

    Article  Google Scholar 

  34. Wen, X., Feng, R., Lin, J., Liu, W., Chen, F., Yang, Q.: Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials. Optik 248, 168092 (2021). https://doi.org/10.1016/j.ijleo.2021.168092

    Article  Google Scholar 

  35. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07583-4

    Article  Google Scholar 

  36. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022). https://doi.org/10.1016/j.optlastec.2022.108428

    Article  Google Scholar 

  37. Fang, J.J., Mou, D.S., Zhang, H.C., Wang, Y.Y.: Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model. Optik 228, 166186 (2021). https://doi.org/10.1016/j.ijleo.2020.166186

    Article  Google Scholar 

  38. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102(3), 1733–1741 (2020). https://doi.org/10.1007/s11071-020-05985-w

  39. Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrödinger equation. Chinese Phys. Lett. 38(9), 090501 (2021). https://doi.org/10.1088/0256-307X/38/9/090501

    Article  Google Scholar 

  40. Liu, W., Qiu, D.Q., Wu, Z.W., He, J.S.: Dynamical behavior of solution in integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Commun. Theor. Phys. 65(6), 671–676 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Y., Suzuki, T., Cheng, X.: Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Appl. Math. Lett. (2020). https://doi.org/10.1016/j.aml.2019.105998

    Article  MathSciNet  MATH  Google Scholar 

  42. Xun, W.K., Tian, S.F., Zhang, T.T.: Inverse scattering transform for the integrable nonlocal Lakshmanan-Porsezian-Daniel equation. Discrete Cont. Dyn. B (2021). https://doi.org/10.3934/dcdsb.2021259

    Article  MATH  Google Scholar 

  43. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98(4), 042202 (2018). https://doi.org/10.1103/PhysRevE.98.042202

    Article  MathSciNet  Google Scholar 

  44. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  45. Yang, B., Chen, Y.: Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations. Nonlinear Dyn. 94(1), 489–502 (2018)

    Article  MATH  Google Scholar 

  46. Yang, B., Chen, Y.: High-order soliton matrices for Sasa-Satsuma equation via local Riemann-Hilbert problem. Nonlinear Anal. Real 45, 918–941 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bian, D.F., Guo, B.L., Ling, L.M.: High-order soliton solution of Landau-Lifshitz equation. Stud. Appl. Math. 134(2), 181–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The project is supported by the Future Scientist and Outstanding Scholar Cultivation Program of East China Normal University (No.WLKXJ202001), National Natural Science Foundation of China (No.12175069, 12235007) and Science and Technology Commission of Shanghai Municipality (No.21JC1402500 and No.18dz2271000).

Funding

The work is supported by the Future Scientist and Outstanding Scholar Cultivation Program of East China Normal University (No.WLKXJ202001), National Natural Science Foundation of China (No.12175069, 12235007) and Science and Technology Commission of Shanghai Municipality (No.21JC1402500 and No.18dz2271000).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and theory. Calculation and analysis were performed by Wang Minmin. The first draft of the manuscript was written by Wang Minmin. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or nonfinancial interests to disclose. The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by the Future Scientist and Outstanding Scholar Cultivation Program of East China Normal University (No.WLKXJ202001), National Natural Science Foundation of China(No.12175069) and Science and Technology Commission of Shanghai Municipality (No.21JC1402500 and No.18dz2271000)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Chen, Y. General multi-soliton and higher-order soliton solutions for a novel nonlocal Lakshmanan–Porsezian–Daniel equation. Nonlinear Dyn 111, 655–669 (2023). https://doi.org/10.1007/s11071-022-07844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07844-2

Keywords

Navigation