Skip to main content
Log in

Riemann–Hilbert approach and soliton classification for a nonlocal integrable nonlinear Schrödinger equation of reverse-time type

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a Riemann–Hilbert (RH) approach is reported for a physically meaningful nonlocal integrable nonlinear Schrödinger equation of reverse-time type, which is connected with a special initial problem of the Manakov system. In this RH approach, the spectral analysis is performed from the x-part of the Lax pair to formulate the desired RH problem. Using the symmetry properties of the potential matrix, the zero structure of the RH problem is investigated in detail. The obtained results mainly comprise (i) the symmetry relations of the scattering data are successfully found, (ii) the general multi-soliton solutions are obtained in the reflectionless cases and classified into three categories according to three types of zeros of the RH problem, and (iii) the long-time behaviors of solutions are shown by solving the RH problem in the reflection cases. Additionally, to show the remarkable features of the obtained multi-soliton solutions, some special soliton dynamics are explored and graphically illustrated using Mathematica. Moreover, the multi-soliton solutions obtained for the nonlocal integrable nonlinear Schrödinger equation can be used to construct solutions of the Manakov system with the specific initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  2. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7 (2017)

    Article  MathSciNet  Google Scholar 

  4. Zhou, Z.X.: Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 62, 480 (2018)

    Article  MathSciNet  Google Scholar 

  5. Lou, S.Y., Huang, F.: Alice-Bob physics: Coherent solutions of nonlocal KdV systems. Sci. Rep. 7, 869 (2017)

    Article  Google Scholar 

  6. Gürses, M., Pekcan, A.: Nonlocal KdV equations. Phys. Lett. A 384, 126894 (2020)

    Article  MathSciNet  Google Scholar 

  7. Song, C.Q., Xiao, D.M., Zhu, Z.N.: Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 45, 13 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ma, L.Y., Shen, S.F., Zhu, Z.N.: Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation. J. Math. Phys. 58, 103501 (2017)

    Article  MathSciNet  Google Scholar 

  9. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions. Commun. Nonlinear Sci. Numer. Simul. 42, 699 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ji, J.L., Zhu, Z.N.: Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. Appl. 453, 973 (2017)

  11. Song, C.Q., Xiao, D.M., Zhu, Z.N.: Reverse space-time nonlocal Sasa-Satsuma equation and its solutions. J. Phys. Soc. Jpn. 86, 054001 (2017)

    Article  Google Scholar 

  12. Ma, L.Y., Zhao, H.Q., Zhu, Z.N.: Integrability and gauge equivalence of the reverse space-time nonlocal Sasa-Satsuma equation. Nonlinear Dyn. 91, 1909 (2018)

    Article  Google Scholar 

  13. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319 (2016)

    Article  MathSciNet  Google Scholar 

  14. Ma, W.X.: Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations. Proc. Am. Math. Soc. 149, 251 (2021)

    Article  Google Scholar 

  15. Ma, W.X.: Riemann-Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations. J. Math. Anal. Appl. 498, 124980 (2021)

    Article  MathSciNet  Google Scholar 

  16. Dai, C.Q., Wang, Y.Y.: Spatiotemporal localizations in (3+1)-dimensional \({{\cal{P}}{\cal{T}}}\)-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 2453 (2016)

    Article  MathSciNet  Google Scholar 

  17. Yan, Z.Y.: Nonlocal general vector nonlinear Schrödinger equations: Integrability, \({\cal{PT}}\) symmetribility, and solutions. Appl. Math. Lett. 62, 101 (2016)

    Article  MathSciNet  Google Scholar 

  18. Sinha, D., Ghosh, P.K.: Integrable nonlocal vector nonlinear Schrödinger equation with self-induced parity-time-symmetric potential. Phys. Lett. A 381, 124 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete \({\cal{PT}}\) symmetric model. Phys. Rev. E 90, 032912 (2014)

    Article  Google Scholar 

  20. Ma, L.Y., Zhu, Z.N.: Nonlocal nonlinear Schrödinger equation and its discrete version: Soliton solutions and gauge equivalence. J. Math. Phys. 57, 083507 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ma, L.Y., Zhu, Z.N.: \(N\)-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation. Appl. Math. Lett. 59, 115 (2016)

    Article  MathSciNet  Google Scholar 

  22. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

    Article  MathSciNet  Google Scholar 

  23. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248 (1974)

    Google Scholar 

  24. Chen, J.C., Yan, Q.X.: Bright soliton solutions to a nonlocal nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn. 100, 2807 (2020)

    Article  Google Scholar 

  25. Yang, J.K.: General \(N\)-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Lett. A 383, 328 (2019)

    Article  MathSciNet  Google Scholar 

  26. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  27. Novikov, S.P., Manakov, S.V., Pitaevski, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    Google Scholar 

  28. Wang, D.S., Zhang, D.J., Yang, J.K.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

  29. Guo, B.L., Ling, L.M.: Riemann-Hilbert approach and \(N\)-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 53, 073506 (2012)

    Article  MathSciNet  Google Scholar 

  30. Ma, W.X.: Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. RWA 47, 1 (2019)

    Article  MathSciNet  Google Scholar 

  31. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Fang, Y.: Riemann-Hilbert method and multi–soliton solutions for three–component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019)

  32. Wu, J.P., Geng, X.G.: Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation. Commun. Nonlinear Sci. Numer. Simul. 53, 83 (2017)

    Article  MathSciNet  Google Scholar 

  33. Wu, J.P.: Riemann-Hilbert approach of the Newell-type long-wave-short-wave equation via the temporal-part spectral analysis. Nonlinear Dyn. 98, 749 (2019)

    Article  Google Scholar 

  34. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28, 739 (2018)

    Article  MathSciNet  Google Scholar 

  35. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics of the Spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382, 585 (2021)

    Article  MathSciNet  Google Scholar 

  36. Zhai, Y.Y., Ji, T., Geng, X.G.: Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber. Appl. Math. Comput. 411, 126551 (2021)

    MATH  Google Scholar 

Download references

Acknowledgements

The author expresses sincere thanks to the editor and the anonymous referees for their valuable suggestions The author would also like to thank the support by the Collaborative Innovation Center for Aviation Economy Development of Henan Province.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J. Riemann–Hilbert approach and soliton classification for a nonlocal integrable nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn 107, 1127–1139 (2022). https://doi.org/10.1007/s11071-021-07005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07005-x

Keywords

Navigation