Skip to main content
Log in

Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we use the Riemann–Hilbert (RH) approach to examine the integrable three-coupled Lakshmanan–Porsezian–Daniel (LPD) model, which describes the dynamics of alpha helical protein with the interspine coupling at the fourth-order dispersion term. Through the spectral analysis of Lax pair, we construct the higher-order matrix RH problem for the three-coupled LPD model, when the jump matrix of this particular RH problem is a \(4\times 4\) unit matrix, the exact N-soliton solutions of the three-coupled LPD model can be exhibited. As special examples, we also investigate the nonlinear dynamical behaviors of the single-soliton, two-soliton, three-soliton and breather soliton solutions. Finally, an integrable generalized N-component LPD model with its linear spectral problem is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Gardner, C.S., Green, J.M., Kruskal, M.D., Miüra, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  2. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  Google Scholar 

  3. Wahlquist, H.D., Estabrook, F.B.: Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 31, 1386–1390 (1973)

    Article  MathSciNet  Google Scholar 

  4. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  5. Lou, S.Y.: A note on the new similarity reductions of the Boussinesq equation. Phys. Lett. A 151, 133–135 (1990)

    Article  MathSciNet  Google Scholar 

  6. Li, J.B., Liu, Z.R.: Smooth and non-smooth traveling waves in a nonlinearly dispersive equation. Appl. Math. Model. 25, 41–56 (2000)

    Article  Google Scholar 

  7. Fan, E.G.: Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics. Chaos Soliton Fract. 16, 819–839 (2003)

    Article  MathSciNet  Google Scholar 

  8. Jin, X.W., Lin, J.: Rogue wave, interaction solutions to the KMM system. J. Magn. Magn. Mater. 502, 166590 (2020)

    Article  Google Scholar 

  9. Guo, B.L., Ling, L.M.: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 53, 073506 (2012)

    Article  MathSciNet  Google Scholar 

  10. Wang, D.S., Yin, S.J., Liu, Y.F.: Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects. Appl. Math. Commun. 229, 296–309 (2014)

    MATH  Google Scholar 

  11. Wang, Z., Qiao, Z.J.: Riemann-Hilbert approach for the FQXL model: a generalized Camassa-Holm equation with cubic and quadratic nonlinearity. J. Math. Phys. 57, 0735025 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Zhang, Y.S., Cheng, Y., He, J.S.: Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation. J. Nonlinear Math. Phy. 24, 210–223 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hu, J., Xu, J., Yu, G.F.: Riemann-Hilbert approach and N-soliton formula for a higher-order Chen-Lee-Liu equation. J. Nonlinear Math. Phy. 25, 633–649 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ma, W.X.: Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ma, W.X.: Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real. 47, 1–17 (2019)

    Article  MathSciNet  Google Scholar 

  16. Ma, W.X.: The inverse scattering transform and soliton solutions of a combined modified Korteweg-de Vries equation. J. Math. Anal. Appl. 471, 796–811 (2019)

    Article  MathSciNet  Google Scholar 

  17. Ma, W.X.: Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math. Method. Appl. Sci. 42, 1099–1113 (2019)

    Article  MathSciNet  Google Scholar 

  18. Zhang, W.G., Yao, Q., Bo, G.Q.: Two-soliton solutions of the complex short pulse equation via Riemann-Hilbert approach. Appl. Math. Lett. 98, 263–270 (2019)

    Article  MathSciNet  Google Scholar 

  19. Ma, X., Xia, T.C.: Riemann-Hilbert approach and N-soliton solutions for the generalized nonlinear Schrödinger equation. Phys. Scr. 94(9), 095203 (2019)

    Article  Google Scholar 

  20. Xu, S.Q., Li, R.M., Geng, X.G.: Riemann-Hilbert method for the three-component Sasa-Satsuma equation and its N-Soliton solutions. Rep. Math. Phys. 85(1), 77–103 (2020)

    Article  MathSciNet  Google Scholar 

  21. Yang, J.J., Tian, S.F., Peng, W.Q., Zhang, T.T.: The N-coupled higher-order nonlinear Schrödinger equation: Riemann-Hilbert problem and multi-soliton solutions. Math. Meth. Appl. Sci. 43(5), 2458–2472 (2020)

    Article  Google Scholar 

  22. Wang, J., Su, T., Geng, X.G., Li, R.M.: Riemann-Hilbert approach and N-soliton solutions for a new two-component Sasa-Satsuma equation. Nonlinear Dyn. 101(1), 597–609 (2020)

    Article  Google Scholar 

  23. Liu, N., Guo, B.L.: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann-Hilbert approach. Nonlinear Dyn. 100(1), 629–646 (2020)

    Article  Google Scholar 

  24. Zhang, J.B., Zhang, Z.X.: A Riemann-Hilbert approach to the multicomponent Kaup-Newell equation. Adv. Math. Phys. 2020, 1–7 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Guo, H.D., Xia, T.C.: Multi-soliton solutions for a higher-order coupled nonlinear Schrödinger system in an optical fiber via Riemann-Hilbert approach. Nonlinear Dyn. 103(2), 1805–1816 (2021)

    Article  Google Scholar 

  26. Li, J., Xia, T.C.: A Riemann-Hilbert approach to the Kundu-nonlinear Schrödinger equation and its multi-component generalization. J. Math. Anal. Appl. 500, 125109 (2021)

    Article  Google Scholar 

  27. Li, Y., Li, J., Wang, R.Q.: Multi-soliton solutions of the N-component nonlinear Schrödinger equations via Riemann-Hilbert approach. Nonlinear Dyn. 105, 1765–1772 (2021)

    Article  Google Scholar 

  28. Hu, B.B., Xia, T.C., Zhang, N., Wang, J.B.: Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line. Int. J. Nonlin. Sci. Num. 19, 83–92 (2018)

    Article  Google Scholar 

  29. Yan, Z.Y.: Initial-boundary value problem for an integrable spin-1 Gross-Pitaevskii system with a \(4\times 4\) Lax pair on a finite interval. J. Math. Phys. 60, 1–70 (2019)

    Article  Google Scholar 

  30. Hu, B.B., Zhang, L., Xia, T.C., Zhang, N.: On the Riemann-Hilbert problem of the Kundu equation. Appl. Math. Comput. 381, 125262 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Hu, B.B., Zhang, L., Xia, T.C.: On the Riemann-Hilbert problem of a generalized derivative nonlinear Schrödinger equation. Commun. Theor. Phys. 73, 015002 (2021)

    Article  Google Scholar 

  32. Hu, B.B., Zhang, L., Zhang, N.: On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. J. Comput. Appl. Math. 390, 113393 (2021)

    Article  Google Scholar 

  33. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  34. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266, 5209–5253 (2019)

    Article  MathSciNet  Google Scholar 

  35. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483–488 (1988)

    Article  Google Scholar 

  36. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the onedimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33, 1807–1816 (1992)

    Article  MathSciNet  Google Scholar 

  37. Saravana Veni, S., Latha, M.M.: A generalized Davydov model with interspine coupling and its integrable discretization. Phys. Scr. 86, 025003 (2012)

    Article  Google Scholar 

  38. Sun, W.R., Tian, B., Wang, Y.F., Zhen, H.L.: Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrödinger equations in the alpha helical proteins. Eur. Phys. J. D 69, 146 (2015)

    Article  Google Scholar 

  39. Du, Z., Tian, B., Chai, H.P., Zhao, X.H.: Lax pair, Darboux transformation and rogue waves for the three-coupled fourth-order nonlinear Schrödinger system in an alpha helical protein. Wave Random Complex (2019). https://doi.org/10.1080/17455030.2019.1644466

  40. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Fang, Y.: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019)

    Article  MathSciNet  Google Scholar 

  41. Yan, Z.Y.: An initial-boundary value problem of the general three-component nonlinear Schrödinger equation with a \(4\times 4\) Lax pair on a finite interval, arXiv:1704.08561 (2017)

Download references

Acknowledgements

The authors would like to express our sincere thanks to every member in our discussion group for their valuable comments.

Funding

This study was funded by National Natural Science Foundation of China (grant numbers 12147115, 11835011 and 11975145), by Natural Science Foundation of Anhui Province (grant number 2108085QA09), by Postdoctoral Fund of Zhejiang Normal University (grant number ZC304021909), by Key Projects of Natural Science Research in Colleges and Universities in Anhui Province (grant number KJ2021B03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bei-Bei Hu or Ji Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, BB., Lin, J. & Zhang, L. Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan–Porsezian–Daniel model. Nonlinear Dyn 107, 2773–2785 (2022). https://doi.org/10.1007/s11071-021-07135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07135-2

Keywords

Mathematics Subject Classification

Navigation