Skip to main content
Log in

Low-frequency multi-direction vibration isolation via a new arrangement of the X-shaped linkage mechanism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Most existing quasi-zero stiffness (QZS) isolators with excellent vibration isolation performance in the low-frequency range are designed to attenuate vibration transmission only in one direction, but vibration suppression in multi-direction is more useful and expected in engineering practice. Hence, a novel 3-degree-of-freedom (3-DOF) passive vibration isolation unit with enhanced QZS effect in a large stroke is designed based on the X-shaped mechanism. The 3-DOF vibration isolation unit exhibits beneficial nonlinear stiffness and damping properties, and it can provide excellent ultra-low-frequency vibration isolation performance in three directions simultaneously. Combining two such isolation units can of course lead to more DOF vibration isolation. The effects of several design parameters such as spring stiffness, lengths of the rods, static equilibrium positions, spring connection parameters, damping coefficients and excitation amplitudes on vibration isolation performance are analyzed in detail. Some comparisons of the static characteristics and vibration isolation performance with a spring–mass–damper (SMD) isolator and an existing typical QZS isolator are carried out. The results reveal that (a) the proposed 3-DOF vibration isolation unit can have much enhanced QZS range with larger loading capacity in the vertical and horizontal directions and HSLD stiffness in the rotational direction; (b) when the excitation amplitudes are large, the novel vibration isolation unit exhibits beneficial nonlinear properties in all three directions without jumping and bifurcation phenomena; (c) compared with the typical QZS isolator, the X-shaped mechanism enables the proposed isolation unit to possess excellent vibration isolation performance in three directions simultaneously with guaranteed stable equilibrium; (d) the new 3-DOF isolator includes only 4 bars in the entire mechanism due to the special and totally new arrangement of the X-shaped mechanism without any guiding sliders, leading to more compact designs of multi-DOF vibration isolation systems of high performance, definitely demanded by engineering practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Availability of data and material

No applicable.

Code availability

No applicable.

References

  1. Li, L., Tan, L., Kong, L., Wang, D., Yang, H.: The influence of flywheel micro vibration on space camera and vibration suppression. Mech. Syst. Signal Process. 100, 360–370 (2018)

    Article  Google Scholar 

  2. Steier, F., Runte, T., Monsky, A., Klock, T., Laduree, G.: Managing the microvibration impact on satellite performances. Acta Astronaut. 162, 61–468 (2019)

    Article  Google Scholar 

  3. Liu, C., Jing, X., Daley, S., Li, F.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015)

    Article  Google Scholar 

  4. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330, 6311–6335 (2011)

    Article  Google Scholar 

  5. Shih, Y.S., Wu, G.Y.: Effect of vibration on fatigue crack growth of an edge crack for a rectangular plate. Int. J. Fatigue 24, 557–566 (2002)

    Article  Google Scholar 

  6. Jing, X., Zhang, L., Feng, X., Sun, B., Li, Q.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019)

    Article  Google Scholar 

  7. Chai, Y., Jing, X., Chao, X.: X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. Int. J. Mech. Sci. 218, 107077 (2022)

  8. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018)

    Article  Google Scholar 

  9. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Article  Google Scholar 

  10. Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020)

    Article  Google Scholar 

  11. Yan, B., Wang, Z., Ma, H., Bao, H., Wang, K., Wu, C.: A novel lever-type vibration isolator with eddy current damping. J. Sound Vib. 494, 115862 (2021)

  12. Wang, C., Chen, Y., Zhang, Z.: Simulation and experiment on the performance of a passive/active micro-vibration isolator. J. Vib. Control 24, 453–465 (2018)

    Article  Google Scholar 

  13. Gatti, G.: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections. Commun. Nonlinear Sci. Numer. Simul. 83, 105143 (2020)

  14. Ding, H., Chen, L.Q.: Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dyn. 95, 2367–2382 (2019)

    Article  Google Scholar 

  15. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322, 707–717 (2009)

    Article  Google Scholar 

  16. Wang, Y., Li, S., Neild, S.A., Jiang, J.Z.: Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dyn. 88, 635–654 (2017)

    Article  Google Scholar 

  17. Fulcher, B.A., Shahan, D.W., Haberman, M.R., Seepersad, C.C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136, 031009 (2014)

  18. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333, 1132–1148 (2014)

    Article  Google Scholar 

  19. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  20. Yan, B., Ma, H., Zhang, L., Zheng, W., Wang, K., Wu, C.: A bistable vibration isolator with nonlinear electromagnetic shunt damping. Mech. Syst. Signal Process. 136, 106504 (2020)

  21. Ma, H., Yan, B.: Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation. Mech. Syst. Signal Process. 146, 107010 (2021)

  22. Sadeghi, S., Li, S.: Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation. Smart Mater. Struct. 28, 065006 (2019)

  23. Ye, K., Ji, J.C.: An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure. Mech. Syst. Signal Process. 165, 108383 (2022)

  24. Wang, Y., Jing, X., Guo, Y.: Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints. Nonlinear Dyn. 95, 445–464 (2019)

    Article  Google Scholar 

  25. Zhao, F., Ji, J., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2020)

  26. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332, 3359–3376 (2013)

    Article  Google Scholar 

  27. Ye, K., Ji, J.C., Brown, T.: Design of a quasi-zero stiffness isolation system for supporting different loads. J. Sound Vib. 471, 115198 (2020)

  28. Yan, B., Ma, H., Yu, N., Zhang, L., Wu, C.: Theoretical modeling and experimental analysis of nonlinear electromagnetic shunt damping. J. Sound Vib. 471, 115184 (2020)

  29. Ishida, S., Suzuki, K., Shimosaka, H.: Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic. J. Vib. Acoust. 139, 051004 (2017)

  30. Jing, X., Chai, Y., Chao, X., Bian, J.: In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms. Mech. Syst. Signal Process. 170, 108267 (2022)

  31. Wu, Z., Jing, X., Bian, J., Li, F., Allen, R.: Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspirat. Biomimet. 10, 056015 (2015)

  32. Bian, J., Jing, X.: Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn. 101, 2195–2222 (2020)

    Article  Google Scholar 

  33. Feng, X., Jing, X., Xu, Z., Guo, Y.: Bio-inspired anti-vibration with nonlinear inertia coupling. Mech. Syst. Signal Process. 124, 562–595 (2019)

    Article  Google Scholar 

  34. Bian, J., Jing, X.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Process. 125, 21–51 (2019)

    Article  Google Scholar 

  35. Jiang, G., Jing, X., Guo, Y.: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech. Syst. Signal Process. 138, 106552 (2020)

  36. Hoque, M.E., Mizuno, T., Ishino, Y., Takasaki, M.: A three-axis vibration isolation system using modified zero-power controller with parallel mechanism technique. Mechatronics 21, 1055–1062 (2011)

    Article  Google Scholar 

  37. Cobb, R.G., Sullivan, J.M., Das, A., Davis, L.P., Hyde, T.T., Davis, T., Rahman, Z.H., Spanos, J.T.: Vibration isolation and suppression system for precision payloads in space. Smart Mater. Struct. 8, 798–812 (1999)

    Article  Google Scholar 

  38. Wang, Y., Liu, H.J.: Six degree-of-freedom microvibration hybrid control system for high technology facilities. Int. J. Struct. Stab. Dyn. 9, 437–460 (2009)

    Article  Google Scholar 

  39. Yun, Y., Li, Y.M.: A general dynamics and control model of a class of multi-DOF manipulators for active vibration control. Mech. Mach. Theory 46, 1549–1574 (2011)

    Article  Google Scholar 

  40. Kamesh, D., Pandiyan, R., Ghosal, A.: Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft. J. Sound Vib. 329, 3431–3450 (2010)

    Article  Google Scholar 

  41. Preumont, A., Horodinca, M., Romanescu, I., de Marneffe, B., Avraam, M., Deraemaeker, A., Bossens, F., Abu Hanieh, A.: A six-axis single-stage active vibration isolator based on Stewart platform. J. Sound Vib. 300, 644–661 (2007)

  42. Ye, K., Ji, J.C., Brown, T.: A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations. Mech. Syst. Signal Process. 149, 107340 (2021)

  43. Zheng, Y., Li, Q., Yan, B., Luo, Y., Zhang, X.: A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs. J. Sound Vib. 422, 390–408 (2018)

    Article  Google Scholar 

  44. Chai, Y., Jing, X., Guo, Y.: A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property. Mech. Syst. Signal Process. 168, 108651 (2022)

  45. Wu, Z., Jing, X., Sun, B., Li, F.: A 6DOF passive vibration isolator using X-shape supporting structures. J. Sound Vib. 380, 90–111 (2016)

    Article  Google Scholar 

  46. Zhou, J., Wang, K., Xu, D., Ouyang, H., Li, Y.: A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts. J. Vib. Acoust. 139, 034502 (2017)

  47. Zhou, J., Xiao, Q., Xu, D., Ouyang, H., Li, Y.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017)

    Article  Google Scholar 

  48. Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62, 149–163 (2015)

    Article  Google Scholar 

  49. Tang, J., Yang, Y., Li, Y., Cao, D.: A 6-DOF micro-vibration isolation platform based on the quasi-zero-stiffness isolator. Proc IMechE Part C J. Mech. Eng. Sci. (2021). https://doi.org/10.1177/09544062211010831

  50. Chai, Y.Y., Li, F.M., Song, Z.G.: Nonlinear vibration behaviors of composite laminated plates with time-dependent base excitation and boundary conditions. Int. J. Nonlinear Sci. Numer. Simul. 18, 145–161 (2017)

    Article  MathSciNet  Google Scholar 

  51. Jing, X.J.: The X-shaped structure/mechanism approach to beneficial nonlinear design in engineering. To appear in Applied Mathematics and Mechanics, Apr 2022

Download references

Acknowledgements

This research is supported by Hong Kong Construction Industry Council R&D Fund (EPS_202017) and Innovation and Technology Fund of Hong Kong Innovation and Technology Commission under Grant No. ITP/020/19AP.

Funding

Innovation and Technology Fund, ITP-020-19AP, Xingjian Jing, Construction Industry Council, EPS_202017, Xingjian Jing.

Author information

Authors and Affiliations

Authors

Contributions

Yuyang Chai did the modeling, analysis and simulation under supervision of Xingjian Jing who also provided the research idea, organized the research work and refined the paper based on the draft.

Corresponding author

Correspondence to Xingjian Jing.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \begin{aligned} \varphi_{1} & = - \arctan \left( {\frac{{\zeta_{1} }}{{\chi_{1} }}} \right) \\ & \quad - \arcsin \left( {\frac{{L_{1}^{2} - L_{2}^{2} - \chi_{1}^{2} - \zeta_{1}^{2} }}{{2L_{2} \sqrt {\chi_{1}^{2} + \zeta_{1}^{2} } }}} \right), \\ \varphi_{2} & = - \arctan \left( {\frac{{\zeta_{2} }}{{\chi_{2} }}} \right) \\ & \quad - \arcsin \left( {\frac{{L_{1}^{2} - L_{2}^{3} - \chi_{2}^{2} - \zeta_{2}^{2} }}{{2L_{2} \sqrt {\chi_{2}^{2} + \zeta_{2}^{2} } }}} \right), \\ \end{aligned} $$
(A.1)

where

$$ \begin{aligned} \chi_{1} & = z + L_{1} \cos \theta_{1} \sin \psi \\ & \quad - \frac{1}{2}(L_{2} - L_{3} )\cos \theta_{2} \sin \psi \\ & \quad - L_{1} \sin \theta_{1} - L_{2} \sin \theta_{2} , \\ \end{aligned} $$
(A.2)
$$ \begin{aligned} \zeta_{1} & = x + L_{1} \cos \theta_{1} \cos \psi \\ & \quad - \frac{1}{2}(L_{2} - L_{3} )\cos \theta_{2} \cos \psi \\ & \quad - \frac{1}{2}(L_{2} + L_{3} )\cos \theta_{2} , \\ \end{aligned} $$
(A.3)
$$ \begin{aligned} \chi_{2} & = z - L_{1} \cos \theta_{1} \sin \psi \\ & \quad + \frac{1}{2}(L_{2} - L_{3} )\cos \theta_{2} \sin \psi \\ & \quad - L_{1} \sin \theta_{1} - L_{2} \sin \theta_{2} , \\ \end{aligned} $$
(A.4)
$$ \begin{aligned} \zeta_{2} & = - x + L_{1} \cos \theta_{1} \cos \psi \\ & \quad - \frac{1}{2}(L_{2} - L_{3} )\cos \theta_{2} \cos \psi \\ & \quad - \frac{1}{2}(L_{2} + L_{3} )\cos \theta_{2} . \\ \end{aligned} $$
(A.5)
$$ \begin{aligned} f_{3x} & = \frac{1}{{L_{2} \left( {\sin \varphi_{2} \cos \alpha_{1} + \cos \varphi_{2} \sin \alpha_{1} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{2} \beta \cos \alpha_{1} \cos \beta_{5} f_{s5} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \alpha \cos \alpha_{1} \sin \beta_{2} f_{s2} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \alpha \cos \beta_{2} f_{s2} \sin \alpha_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \beta \cos \alpha_{1} f_{s5} \sin \beta_{5} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} \cos \beta_{2} f_{s2} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \cos \alpha_{1} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{1} L_{2} \cos\varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \cos \beta_{1} f_{s1} \sin \alpha_{1} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} \\ & \quad + L_{1} L_{3} \sin\varphi_{2} \cos \alpha_{1} \cos \beta_{2} f_{s2} \\ & \quad + L_{1} L_{3} \cos \varphi_{2} \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{2} L_{4} \cos \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad - L_{2} L_{4} \cos \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} ), \\ \end{aligned} $$
(A.6)
$$ \begin{aligned} f_{3z} & = \frac{1}{{L_{2} \left( {\sin \varphi_{2} \cos \alpha_{1} + \cos \varphi_{2} \sin \alpha_{1} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{2} \alpha \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{1} L_{2} \sin \varphi_{2} \alpha \cos \beta_{2} f_{s2} \sin \alpha_{1} \\ & \quad + f_{s5} \cos \beta_{5} \beta L_{2} \sin \varphi_{2} L_{1} \sin \alpha_{1} \\ & \quad + f_{s5} \sin \beta_{5} \beta L_{2} \cos \varphi_{2} L_{1} \sin \alpha_{1} \\ & \quad - L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \beta_{1} f_{s1} \sin \alpha_{1} \\ & \quad + f_{s2} \cos \beta_{2} \sin \varphi_{2} L_{2} L_{1} \sin \alpha_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} \\ & \quad + f_{s2} \sin \beta_{2} \cos \varphi_{2} L_{2} L_{1} \sin \alpha_{1} \\ & \quad + f_{s2} \cos \beta_{2} \sin \varphi_{2} L_{3} L_{1} \sin \alpha_{1} \\ & \quad + f_{s2} \sin \beta_{2} \cos \varphi_{2} L_{3} L_{1} \sin \alpha_{1} \\ & \quad + L_{2} L_{4} \sin \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad + L_{2} L_{4} \sin \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} ), \\ \end{aligned} $$
(A.7)
$$ \begin{aligned} f_{4x} & = \frac{1}{{L_{2} \left( {\sin \varphi_{1} \cos \alpha_{2} + \cos \varphi_{1} \sin \alpha_{2} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{1} \beta \cos \alpha_{2} \cos \beta_{4} f_{s4} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \alpha \cos \alpha_{2} \sin \beta_{3} f_{s3} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \alpha \cos \beta_{3} f_{s3} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \beta \cos \alpha_{2} f_{s4} \sin \beta_{4} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} \cos \beta_{3} f_{s3} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \alpha_{2} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{1} L_{2} \cos\varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \beta_{1} f_{s1} \sin \alpha_{2} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} \\ & \quad + L_{1} L_{3} \sin\varphi_{1} \cos \alpha_{2} \cos \beta_{3} f_{s3} \\ & \quad + L_{1} L_{3} \cos \varphi_{1} \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{2} L_{4} \cos \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad - L_{2} L_{4} \cos \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} ), \\ \end{aligned} $$
(A.8)
$$ \begin{aligned} f_{4z} & = \frac{1}{{L_{2} \left( {\sin \varphi_{1} \cos \alpha_{2} + \cos \varphi_{1} \sin \alpha_{2} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{1} \alpha \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{1} L_{2} \sin \varphi_{1} \alpha \cos \beta_{3} f_{s3} \sin \alpha_{2} \\ & \quad + f_{s4} \cos \beta_{4} \beta L_{2} \sin \varphi_{1} L_{1} \sin \alpha_{2} \\ & \quad + f_{s4} \sin \beta_{4} \beta L_{2} \cos \varphi_{1} L_{1} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \beta_{1} f_{s1} \sin \alpha_{2} \\ & \quad + f_{s3} \cos \beta_{3} \sin \varphi_{1} L_{2} L_{1} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} \\ & \quad + f_{s3} \sin \beta_{3} \cos \varphi_{1} L_{2} L_{1} \sin \alpha_{2} \\ & \quad + f_{s3} \cos \beta_{3} \sin \varphi_{1} L_{3} L_{1} \sin \alpha_{2} \\ & \quad + f_{s3} \sin \beta_{3} \cos \varphi_{1} L_{3} L_{1} \sin \alpha_{2} \\ & \quad + L_{2} L_{4} \sin \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad + L_{2} L_{4} \sin \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} ), \\ \end{aligned} $$
(A.9)
$$ \begin{aligned} F_{x} & = \frac{1}{{L_{2} \left( {\sin \varphi_{2} \cos \alpha_{1} + \cos \varphi_{2} \sin \alpha_{1} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{2} \beta \cos \alpha_{1} \cos \beta_{5} f_{s5} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \alpha \cos \alpha_{1} \sin \beta_{2} f_{s2} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \alpha \cos \beta_{2} f_{s2} \sin \alpha_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \beta \cos \alpha_{1} f_{s5} \sin \beta_{5} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} \cos \beta_{2} f_{s2} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \cos \alpha_{1} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{1} L_{2} \cos\varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \cos \beta_{1} f_{s1} \sin \alpha_{1} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} \\ & \quad + L_{1} L_{3} \sin\varphi_{2} \cos \alpha_{1} \cos \beta_{2} f_{s2} \\ & \quad + L_{1} L_{3} \cos \varphi_{2} \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{2} L_{4} \cos \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad - L_{2} L_{4} \cos \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} ) \\ & \quad - \frac{1}{{L_{2} \left( {\sin \varphi_{1} \cos \alpha_{2} + \cos \varphi_{1} \sin \alpha_{2} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{1} \beta \cos \alpha_{2} \cos \beta_{4} f_{s4} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \alpha \cos \alpha_{2} \sin \beta_{3} f_{s3} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \alpha \cos \beta_{3} f_{s3} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \beta \cos \alpha_{2} f_{s4} \sin \beta_{4} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} \cos \beta_{3} f_{s3} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \alpha_{2} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{1} L_{2} \cos\varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \beta_{1} f_{s1} \sin \alpha_{2} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} \\ & \quad + L_{1} L_{3} \sin\varphi_{1} \cos \alpha_{2} \cos \beta_{3} f_{s3} \\ & \quad + L_{1} L_{3} \cos \varphi_{1} \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{2} L_{4} \cos \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad - L_{2} L_{4} \cos \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} ) \\ & \quad - f_{s2} \cos \beta_{2} + f_{s3} \cos \beta_{3} + f_{s4} \cos \beta_{4} - f_{s5} \cos \beta_{5} , \\ \end{aligned} $$
(A.10)
$$ \begin{aligned} F_{z} & = \frac{1}{{L_{2} \left( {\sin \varphi_{2} \cos \alpha_{1} + \cos \varphi_{2} \sin \alpha_{1} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{2} \alpha \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{1} L_{2} \sin \varphi_{2} \alpha \cos \beta_{2} f_{s2} \sin \alpha_{1} \\ & \quad + f_{s5} \cos \beta_{5} \beta L_{2} \sin \varphi_{2} L_{1} \sin \alpha_{1} \\ & \quad + f_{s5} \sin \beta_{5} \beta L_{2} \cos \varphi_{2} L_{1} \sin \alpha_{1} \\ & \quad - L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \beta_{1} f_{s1} \sin \alpha_{1} \\ & \quad + f_{s2} \cos \beta_{2} \sin \varphi_{2} L_{2} L_{1} \sin \alpha_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} \\ & \quad + f_{s2} \sin \beta_{2} \cos \varphi_{2} L_{2} L_{1} \sin \alpha_{1} \\ & \quad + f_{s2} \cos \beta_{2} \sin \varphi_{2} L_{3} L_{1} \sin \alpha_{1} \\ & \quad + f_{s2} \sin \beta_{2} \cos \varphi_{2} L_{3} L_{1} \sin \alpha_{1} \\ & \quad + L_{2} L_{4} \sin \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad + L_{2} L_{4} \sin \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} ) \\ & \quad + \frac{1}{{L_{2} \left( {\sin \varphi_{1} \cos \alpha_{2} + \cos \varphi_{1} \sin \alpha_{2} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{1} \alpha \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{1} L_{2} \sin \varphi_{1} \alpha \cos \beta_{3} f_{s3} \sin \alpha_{2} \\ & \quad + f_{s4} \cos \beta_{4} \beta L_{2} \sin \varphi_{1} L_{1} \sin \alpha_{2} \\ & \quad + f_{s4} \sin \beta_{4} \beta L_{2} \cos \varphi_{1} L_{1} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \beta_{1} f_{s1} \sin \alpha_{2} \\ & \quad + f_{s3} \cos \beta_{3} \sin \varphi_{1} L_{2} L_{1} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} \\ & \quad + f_{s3} \sin \beta_{3} \cos \varphi_{1} L_{2} L_{1} \sin \alpha_{2} \\ & \quad + f_{s3} \cos \beta_{3} \sin \varphi_{1} L_{3} L_{1} \sin \alpha_{2} \\ & \quad + f_{s3} \sin \beta_{3} \cos \varphi_{1} L_{3} L_{1} \sin \alpha_{2} \\ & \quad + L_{2} L_{4} \sin \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad + L_{2} L_{4} \sin \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} ) \\ & \quad - f_{s2} \sin \beta_{2} - f_{s3} \sin \beta_{3} - f_{s4} \sin \beta_{4} - f_{s5} \sin \beta_{5} , \\ \end{aligned} $$
(A.11)
$$ \begin{aligned} M_{\psi } & = \frac{1}{2}\sin \psi \\ & \quad (2L_{1} \cos \theta_{1} + L_{3} \cos \theta_{2} - L_{2} \cos \theta_{2} ) \\ & \quad (2f_{s1} \cos \beta_{1} - f_{s2} \cos \beta_{2} - f_{s3} \cos \beta_{3} \\ & \quad + f_{s4} \cos \beta_{4} + f_{s5} \cos \beta_{5} \\ & \quad + \frac{1}{{L_{2} \left( {\sin \varphi_{2} \cos \alpha_{1} + \cos \varphi_{2} \sin \alpha_{1} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{2} \beta \cos \alpha_{1} \cos \beta_{5} f_{s5} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \alpha \cos \alpha_{1} \sin \beta_{2} f_{s2} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \alpha \cos \beta_{2} f_{s2} \sin \alpha_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \beta \cos \alpha_{1} f_{s5} \sin \beta_{5} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} \cos \beta_{2} f_{s2} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \cos \alpha_{1} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{2} \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{1} L_{2} \cos\varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \cos \beta_{1} f_{s1} \sin \alpha_{1} \\ & \quad - L_{1} L_{2} \cos \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} \\ & \quad + L_{1} L_{3} \sin\varphi_{2} \cos \alpha_{1} \cos \beta_{2} f_{s2} \\ & \quad + L_{1} L_{3} \cos \varphi_{2} \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{2} L_{4} \cos \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad - L_{2} L_{4} \cos \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} ) \\ & \quad + \frac{1}{{L_{2} \left( {\sin \varphi_{1} \cos \alpha_{2} + \cos \varphi_{1} \sin \alpha_{2} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{1} \beta \cos \alpha_{2} \cos \beta_{4} f_{s4} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \alpha \cos \alpha_{2} \sin \beta_{3} f_{s3} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \alpha \cos \beta_{3} f_{s3} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \beta \cos \alpha_{2} f_{s4} \sin \beta_{4} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} \cos \beta_{3} f_{s3} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \alpha_{2} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \cos \varphi_{1} \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{1} L_{2} \cos\varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \beta_{1} f_{s1} \sin \alpha_{2} \\ & \quad - L_{1} L_{2} \cos \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} \\ & \quad + L_{1} L_{3} \sin\varphi_{1} \cos \alpha_{2} \cos \beta_{3} f_{s3} \\ & \quad + L_{1} L_{3} \cos \varphi_{1} \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{2} L_{4} \cos \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad - L_{2} L_{4} \cos \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} )) \\ \end{aligned} $$
$$ \begin{aligned} & \quad - \frac{1}{2}\cos \psi (2L_{1} \cos \theta_{1} + L_{3} \cos \theta_{2} - L_{2} \cos \theta_{2} ) \\ & \quad (2f_{s1} \sin \beta_{1} - f_{s2} \sin \beta_{2} + f_{s3} \sin \beta_{3} \\ & \quad - f_{s4} \sin \beta_{4} + f_{s5} \sin \beta_{5} \\ & \quad + \frac{1}{{L_{2} \left( {\sin \varphi_{2} \cos \alpha_{1} + \cos \varphi_{2} \sin \alpha_{1} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{2} \alpha \cos \alpha_{1} f_{s2} \sin \beta_{2} \\ & \quad - L_{1} L_{2} \sin \varphi_{2} \alpha \cos \beta_{2} f_{s2} \sin \alpha_{1} \\ & \quad + f_{s5} \cos \beta_{5} \beta L_{2} \sin \varphi_{2} L_{1} \sin \alpha_{1} \\ & \quad + f_{s5} \sin \beta_{5} \beta L_{2} \cos \varphi_{2} L_{1} \sin \alpha_{1} \\ & \quad - L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \beta_{1} f_{s1} \sin \alpha_{1} \\ & \quad + f_{s2} \cos \beta_{2} \sin \varphi_{2} L_{2} L_{1} \sin \alpha_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} \\ & \quad + f_{s2} \sin \beta_{2} \cos \varphi_{2} L_{2} L_{1} \sin \alpha_{1} \\ & \quad + f_{s2} \cos \beta_{2} \sin \varphi_{2} L_{3} L_{1} \sin \alpha_{1} \\ & \quad + f_{s2} \sin \beta_{2} \cos \varphi_{2} L_{3} L_{1} \sin \alpha_{1} \\ & \quad + L_{2} L_{4} \sin \varphi_{2} \cos \alpha_{1} f_{s4} \sin \beta_{4} \\ & \quad + L_{2} L_{4} \sin \varphi_{2} \cos \beta_{4} f_{s4} \sin \alpha_{1} ) \\ & \quad - \frac{1}{{L_{2} \left( {\sin \varphi_{1} \cos \alpha_{2} + \cos \varphi_{1} \sin \alpha_{2} } \right)L_{1} }} \\ & \quad (L_{1} L_{2} \sin \varphi_{1} \alpha \cos \alpha_{2} f_{s3} \sin \beta_{3} \\ & \quad - L_{1} L_{2} \sin \varphi_{1} \alpha \cos \beta_{3} f_{s3} \sin \alpha_{2} \\ & \quad + f_{s4} \cos \beta_{4} \beta L_{2} \sin \varphi_{1} L_{1} \sin \alpha_{2} \\ & \quad + f_{s4} \sin \beta_{4} \beta L_{2} \cos \varphi_{1} L_{1} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} f_{s1} \sin \beta_{1} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \beta_{1} f_{s1} \sin \alpha_{2} \\ & \quad + f_{s3} \cos \beta_{3} \sin \varphi_{1} L_{2} L_{1} \sin \alpha_{2} \\ & \quad + L_{1} L_{2} \sin \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} \\ & \quad + f_{s3} \sin \beta_{3} \cos \varphi_{1} L_{2} L_{1} \sin \alpha_{2} \\ & \quad + f_{s3} \cos \beta_{3} \sin \varphi_{1} L_{3} L_{1} \sin \alpha_{2} \\ & \quad + f_{s3} \sin \beta_{3} \cos \varphi_{1} L_{3} L_{1} \sin \alpha_{2} \\ & \quad + L_{2} L_{4} \sin \varphi_{1} \cos \alpha_{2} f_{s5} \sin \beta_{5} \\ & \quad + L_{2} L_{4} \sin \varphi_{1} \cos \beta_{5} f_{s5} \sin \alpha_{2} )). \\ \end{aligned} $$
(A.12)

Appendix B

Table 2 Detailed expressions of the parameters y, κ0, κ1, κ2, κ3, κ4, μ1, μ2, μ3 and μ4 in Eq. (42) of the 3-DOF passive vibration isolation unit in the directions of x, z and ψ

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Y., Jing, X. Low-frequency multi-direction vibration isolation via a new arrangement of the X-shaped linkage mechanism. Nonlinear Dyn 109, 2383–2421 (2022). https://doi.org/10.1007/s11071-022-07452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07452-0

Keywords

Navigation