Skip to main content
Log in

A compact nonlinear stiffness-modulated structure for low-frequency vibration isolation under heavy loads

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear quasi-zero stiffness (QZS) has recently attracted significant attention from the scientific and engineering community as a method for designing low-frequency vibration isolators. However, previous studies primarily used bistable structures and linear springs to provide negative and positive stiffness, respectively, which limits the QZS range and loading capacity of QZS isolators. This work proposes a novel nonlinear stiffness-modulated anti-vibration structure combined with a disc spring group and a volute spring and demonstrates its feasibility for low-frequency vibration isolation under heavy loads. The asymmetrical negative stiffness provided by the disc spring group and hardened positive stiffness provided by the volute spring compensate each other to construct QZS characteristics. Their nonlinearities can weaken each other, which can lead to a wide QZS range. At the QZS position, the disc springs and the volute spring together provide the positive force, which ensures a large loading capacity. By adjusting the design parameters, different QZS characteristics can be conveniently realized. Compared with traditional QZS structures and typical X-shaped structures, the QZS range of the proposed anti-vibration structure can be, respectively, extended by 2.3 and 1.5 times without sacrificing loading capacity. The dynamic equation is derived from the original nonlinear force expression rather than the typical polynomial approximation expression, which can improve the accuracy of the results, especially under large excitation. The displacement transmissibility obtained by the alternating frequency–time harmonic balance method indicates that the proposed anti-vibration structure exhibits the best vibration isolation performance compared with the linear isolators, traditional QZS isolators, and typical X-shaped isolators. In addition, such a stiffness-modulated anti-vibration structure has a higher sensitivity to damping and a lower sensitivity to base excitation amplitude, which makes it more potential for engineering applications. Besides, the validity of the theoretical analysis is verified by static compression tests and dynamic experiments. This work provides a new method for designing and analysing QZS isolators for heavy-duty low-frequency vibration isolation required in many engineering practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Li, L., Tan, L., Kong, L., Wang, D., Yang, H.: The influence of flywheel micro vibration on space camera and vibration suppression. Mech Syst Signal Pr 100, 360–370 (2018). https://doi.org/10.1016/j.ymssp.2017.07.029

    Article  Google Scholar 

  2. Sun, X., Zhang, C., Fu, Q., Zhang, H., Dong, H.: Measurement and modeling for harmonic dynamic characteristics of a liquid-filled isolator with a rubber element and high-viscosity silicone oil at low frequency. Mech Syst Signal Pr 140, 106659 (2020). https://doi.org/10.1016/j.ymssp.2020.106659

    Article  Google Scholar 

  3. Li, Y., Xu, D.: Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. Int. J. Mech. Sci. 126, 186–195 (2017). https://doi.org/10.1016/j.ijmecsci.2017.03.029

    Article  Google Scholar 

  4. Jing, X., Zhang, L., Feng, X., Sun, B., Li, Q.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech Syst Signal Pr 118, 317–339 (2019). https://doi.org/10.1016/j.ymssp.2018.09.004

    Article  Google Scholar 

  5. Steier, F., Runte, T., Monsky, A., Klock, T., Laduree, G.: Managing the micro-vibration impact on satellite performances. Acta Astronaut. 162, 461–468 (2019). https://doi.org/10.1016/j.actaastro.2019.06.027

    Article  Google Scholar 

  6. Huang, X., Ni, Z., Zhang, Z., Hua, H.: Stiffness optimization of marine propulsion shafting system by FRF-based substructuring method and sensitivity analysis. Ocean Eng. 144, 243–256 (2017). https://doi.org/10.1016/j.oceaneng.2017.08.042

    Article  Google Scholar 

  7. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  8. Zhao, Y., Meng, G.: A bio-inspired semi-active vibration isolator with variable-stiffness dielectric elastomer: design and modeling. J. Sound Vib. 485, 115592 (2020). https://doi.org/10.1016/j.jsv.2020.115592

    Article  Google Scholar 

  9. Jiang, X., Guo, M., Li, B.: Active control of high-frequency tool-workpiece vibration in micro-grinding. Int. J. Adv. Manuf. Technol. 94(1–4), 1429–1439 (2018). https://doi.org/10.1007/s00170-017-1015-5

    Article  Google Scholar 

  10. Nie, S., Zhuang, Y., Wang, Y., Guo, K.: Velocity & displacement-dependent damper: a novel passive shock absorber inspired by the semi-active control. Mech. Syst. Signal Pr 99, 730–746 (2018). https://doi.org/10.1016/j.ymssp.2017.07.008

    Article  Google Scholar 

  11. Han, W., Lu, Z., Niu, M., Chen, L.: A high-static-low-dynamics stiffness vibration isolator via an elliptical ring. Mech Syst Signal Pr 162, 108061 (2022). https://doi.org/10.1016/j.ymssp.2021.108061

    Article  Google Scholar 

  12. Yan, B., Yu, N., Ma, H., Wu, C.: A theory for bistable vibration isolators. Mech. Syst. Signal Pr 167, 14 (2022). https://doi.org/10.1016/j.ymssp.2021.108507

    Article  Google Scholar 

  13. Lu, Z., Gu, D., Ding, H., Lacarbonara, W., Chen, L.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Pr 136, 106490 (2020). https://doi.org/10.1016/j.ymssp.2019.106490

    Article  Google Scholar 

  14. Jiang, G., Jing, X., Guo, Y.: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech. Syst. Signal Pr 138, 106552 (2020). https://doi.org/10.1016/j.ymssp.2019.106552

    Article  Google Scholar 

  15. Shaw, A.D., Gatti, G., Gonçalves, P.J.P., Tang, B., Brennan, M.J.: Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mech. Syst. Signal Pr 152, 107354 (2021). https://doi.org/10.1016/j.ymssp.2020.107354

    Article  Google Scholar 

  16. Zheng, Y., Shangguan, W., Yin, Z., Liu, X.: Design and modeling of a quasi-zero stiffness isolator for different loads. Mech. Syst. Signal Pr 188, 26 (2023). https://doi.org/10.1016/j.ymssp.2022.110017

    Article  Google Scholar 

  17. Zhou, J., Xiao, Q., Xu, D., Ouyang, H., Li, Y.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017). https://doi.org/10.1016/j.jsv.2017.01.021

    Article  Google Scholar 

  18. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008). https://doi.org/10.1016/j.jsv.2008.01.014

    Article  Google Scholar 

  19. Zhao, F., Ji, J., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106093

    Article  Google Scholar 

  20. Zhao, F., Ji, J.C., Ye, K., Luo, Q.: Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal Pr 144, 106975 (2020). https://doi.org/10.1016/j.ymssp.2020.106975

    Article  Google Scholar 

  21. Huang, X., Chen, Y., Hua, H., Liu, X., Zhang, Z.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: Theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015). https://doi.org/10.1016/j.jsv.2015.02.001

    Article  Google Scholar 

  22. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014). https://doi.org/10.1016/j.jsv.2013.10.026

    Article  Google Scholar 

  23. Li, M., Cheng, W., Xie, R.: Design and experiments of a quasi–zero-stiffness isolator with a noncircular cam-based negative-stiffness mechanism. J. Vib. Control 26(21–22), 1935–1947 (2020). https://doi.org/10.1177/1077546320908689

    Article  Google Scholar 

  24. Wang, X., Zhou, J., Xu, D., Ouyang, H., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dynam 87(1), 633–646 (2017). https://doi.org/10.1007/s11071-016-3065-x

    Article  Google Scholar 

  25. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015). https://doi.org/10.1016/j.jsv.2015.02.005

    Article  Google Scholar 

  26. Yao, Y., Li, H., Li, Y., Wang, X.: Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism. Int. J. Mech. Sci. 186, 105888 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105888

    Article  Google Scholar 

  27. Zuo, S., Wang, D., Zhang, Y., Luo, Q.: Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 220, 107146 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107146

    Article  Google Scholar 

  28. Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech Syst Signal Pr 62–63, 149–163 (2015). https://doi.org/10.1016/j.ymssp.2015.01.026

    Article  Google Scholar 

  29. Jing, X., Chai, Y., Chao, X., Bian, J.: In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms. Mech Syst Signal Pr 170, 31 (2022). https://doi.org/10.1016/j.ymssp.2021.108267

    Article  Google Scholar 

  30. Jin, G., Wang, Z., Yang, T.: Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Appl. Math. Mech. 43(6), 813–824 (2022). https://doi.org/10.1007/s10483-022-2852-5

    Article  MathSciNet  Google Scholar 

  31. Han, H., Sorokin, V., Tang, L., Cao, D.: A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube. Nonlinear Dynam 105(2), 1313–1325 (2021). https://doi.org/10.1007/s11071-021-06650-6

    Article  Google Scholar 

  32. Wu, J., Che, J., Chen, X., Jiang, W.: Design of a combined magnetic negative stiffness mechanism with high linearity in a wide working region. SCIENCE CHINA Technol. Sci. 65(9), 2127–2142 (2022). https://doi.org/10.1007/s11431-022-2121-7

    Article  Google Scholar 

  33. Jiang, Y., Song, C., Ding, C., Xu, B.: Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. J. Sound Vib. 477, 115346 (2020). https://doi.org/10.1016/j.jsv.2020.115346

    Article  Google Scholar 

  34. Yan, B., Yu, N., Wang, Z., Wu, C., Wang, S., Zhang, W.: Lever-type quasi-zero stiffness vibration isolator with magnetic spring. J. Sound Vib. 527, 116865 (2022). https://doi.org/10.1016/j.jsv.2022.116865

    Article  Google Scholar 

  35. Zhang, F., Xu, M., Shao, S., Xie, S.: A new high-static-low-dynamic stiffness vibration isolator based on magnetic negative stiffness mechanism employing variable reluctance stress. J. Sound Vib. 476, 115322 (2020). https://doi.org/10.1016/j.jsv.2020.115322

    Article  Google Scholar 

  36. Wang, Q., Zhou, J., Xu, D., Ouyang, H.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech Syst Signal Pr 139, 106633 (2020). https://doi.org/10.1016/j.ymssp.2020.106633

    Article  Google Scholar 

  37. Ye, K., Ji, J.C.: An origami-inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure. Mech Syst Signal Pr 165, 108383 (2022). https://doi.org/10.1016/j.ymssp.2021.108383

    Article  Google Scholar 

  38. Han, H., Sorokin, V., Tang, L., Cao, D.: Lightweight origami isolators with deployable mechanism and quasi-zero-stiffness property. Aerosp. Sci. Technol. 121, 107319 (2022). https://doi.org/10.1016/j.ast.2021.107319

    Article  Google Scholar 

  39. Liu, S., Peng, G., Jin, K.: Towards accurate modeling of the Tachi-Miura origami in vibration isolation platform with geometric nonlinear stiffness and damping. Appl. Math. Model. 103, 674–695 (2022). https://doi.org/10.1016/j.apm.2021.11.012

    Article  MathSciNet  Google Scholar 

  40. Chai, Y., Jing, X.: Low-frequency multi-direction vibration isolation via a new arrangement of the X-shaped linkage mechanism. Nonlinear Dynam 109(4), 2383–2421 (2022). https://doi.org/10.1007/s11071-022-07452-0

    Article  Google Scholar 

  41. Chai, Y., Jing, X., Guo, Y.: A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property. Mech. Syst. Signal Pr 168, 108651 (2022). https://doi.org/10.1016/j.ymssp.2021.108651

    Article  Google Scholar 

  42. Xiong, Y., Li, F., Wang, Y.: A nonlinear quasi-zero-stiffness vibration isolation system with additional X-shaped structure: Theory and experiment. Mech. Syst. Signal Pr 177, 109208 (2022). https://doi.org/10.1016/j.ymssp.2022.109208

    Article  Google Scholar 

  43. Sun, M., Song, G., Li, Y., Huang, Z.: Effect of negative stiffness mechanism in a vibration isolator with asymmetric and high-static-low-dynamic stiffness. Mech. Syst. Signal Pr 124, 388–407 (2019). https://doi.org/10.1016/j.ymssp.2019.01.042

    Article  Google Scholar 

  44. Yan, G., Wu, Z., Wei, X., Wang, S., Zou, H., Zhao, L., Qi, W., Zhang, W.: Nonlinear compensation method for quasi-zero stiffness vibration isolation. J. Sound Vib. 523, 116743 (2022). https://doi.org/10.1016/j.jsv.2021.116743

    Article  Google Scholar 

  45. Yan, G., Qi, W., Shi, J., Yan, H., Zou, H., Zhao, L., Wu, Z., Fang, X., Li, X., Zhang, W.: Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism. J. Sound Vib. 525, 116799 (2022). https://doi.org/10.1016/j.jsv.2022.116799

    Article  Google Scholar 

  46. Qi, W., Yan, G., Lu, J., Yan, H., Shi, J., Wei, X., Wang, S., Zhang, W.: Magnetically modulated sliding structure for low-frequency vibration isolation. J. Sound Vib. 526, 116819 (2022). https://doi.org/10.1016/j.jsv.2022.116819

    Article  Google Scholar 

  47. Zhao, T., Yan, G., Qi, W., Lu, J., Zhang, W.: Magnetically modulated tetrahedral structure for low-frequency vibration isolation with adjustable load capacity. Int. J. Mech. Sci. 251, 108335 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108335

    Article  Google Scholar 

  48. Chong, X., Wu, Z., Li, F.: Vibration isolation properties of the nonlinear X-combined structure with a high-static and low-dynamic stiffness: Theory and experiment. Mech Syst Signal Pr 179, 109352 (2022). https://doi.org/10.1016/j.ymssp.2022.109352

    Article  Google Scholar 

  49. Chai, Y., Jing, X., Chao, X.: X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. Int. J. Mech. Sci. 218, 107077 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107077

    Article  Google Scholar 

  50. Moshtaghi Yazdani, N.: Multi-objective optimization of volute springs using an improved NSGA II. Admt Journal 13(4), 13–19 (2020)

    Google Scholar 

  51. Wang, Q., Zhou, J., Wang, K., Lin, Q., Xu, D., Wen, G.: A compact quasi-zero-stiffness device for vibration suppression and energy harvesting. Int. J. Mech. Sci. 250, 108284 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108284

    Article  Google Scholar 

  52. Chen, S., Xuan, M., Xin, J., Liu, Y., Gu, S., Li, J., Zhang, L.: Design and experiment of dual micro-vibration isolation system for optical satellite flywheel. Int. J. Mech. Sci. 179, 105592 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105592

    Article  Google Scholar 

  53. Mao, J., Hao, Z., Jing, G., Zheng, X., Liu, C.: Sound quality improvement for a four-cylinder diesel engine by the block structure optimization. Appl. Acoust. 74(1), 150–159 (2013). https://doi.org/10.1016/j.apacoust.2012.07.005

    Article  Google Scholar 

  54. Yu, C., Fu, Q., Zhang, J., Zhang, N.: The vibration isolation characteristics of torsion bar spring with negative stiffness structure. Mech Syst Signal Pr 180, 109378 (2022). https://doi.org/10.1016/j.ymssp.2022.109378

    Article  Google Scholar 

  55. Chen, R., Li, X., Yang, Z., Xu, J., Yang, H.: A variable positive-negative stiffness joint with low frequency vibration isolation performance. Measurement 185, 110046 (2021). https://doi.org/10.1016/j.measurement.2021.110046

    Article  Google Scholar 

  56. Chen, R., Li, X., Tian, J., Yang, Z., Xu, J.: On the displacement transferability of variable stiffness multi-directional low frequency vibration isolation joint. Appl. Math. Model. 112, 690–707 (2022). https://doi.org/10.1016/j.apm.2022.08.021

    Article  MathSciNet  Google Scholar 

  57. Zhou, Y., Chen, P.: Investigations on a vertical isolation system with quasi-zero stiffness property. Smart Struct. Syst. 25(5), 15 (2020). https://doi.org/10.12989/sss.2020.25.5.543

    Article  Google Scholar 

  58. Meng, L., Sun, J., Wu, W.: Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element. Shock. Vib. 2015, 1–19 (2015). https://doi.org/10.1155/2015/813763

    Article  Google Scholar 

  59. Liu, Y., Ji, W., Gu, H., Deng, E., Wang, X., Song, C.: Force transmissibility of a 6-DOF passive quasi-zero stiffness vibration isolation platform. J. Mech. Sci. Technol. 35(6), 2313–2324 (2021). https://doi.org/10.1007/s12206-021-0504-5

    Article  Google Scholar 

  60. Almen, J.O.: The Uniform-Section Disk Spring. Trans Asme 58(4), 305–314 (1936)

    Google Scholar 

  61. Wahl, A.M.: Mechanical springs. McGraw-Hill, New York (1963)

    Google Scholar 

  62. Ozaki, S., Tsuda, K., Tominaga, J.: Analyses of static and dynamic behavior of coned disk springs: effects of friction boundaries. Thin Wall Struct 59, 132–143 (2012). https://doi.org/10.1016/j.tws.2012.06.001

    Article  Google Scholar 

  63. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems, 1st edn. Springer International Publishing, Switzerland, Cham (2019)

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (Grant No. 52275092).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Kangfan Yu, Yunwei Chen and Chuanyun Yu. The first draft of the manuscript was written by Kangfan Yu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianrun Zhang.

Ethics declarations

Conflict of interest

Kangfan Yu, Yunwei Chen, Chuanyun Yu, Jianrun Zhang and Xi Lu declare that they have no conflict of interest or financial conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Chen, Y., Yu, C. et al. A compact nonlinear stiffness-modulated structure for low-frequency vibration isolation under heavy loads. Nonlinear Dyn 112, 5863–5893 (2024). https://doi.org/10.1007/s11071-024-09334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09334-z

Keywords

Navigation