Skip to main content
Log in

Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inspired by the limb configuration of animals in their jumping and landing motions, a systematic investigation on the properties of a class of bio-inspired vertically asymmetric X-shaped (vaX) structures is carried out to explore the advantage of nonlinear characteristics in practical engineering. The nonlinear properties of two different vaX structures are studied under different constraint conditions. Formulations of the nonlinear vibration frequency and absolute displacement transmissibility of the structures are derived by the method of multiple scales. Considering practical conditions, three different constraints (i.e., (a) the same isolations height and assembling angle; (b) the same total rod length and assembling angle; (c) the same total rod length and isolation height) are summarized in this manuscript. Under these conditions, nonlinear properties including nonlinear vibration frequency, isolation performance and static stiffness are systematically discussed. Furthermore, the influences of the assembling pattern (i.e., normal and reverse assembling) on the isolation performance are investigated in detail. The results reveal that there exists rod-length ratio \(s_{1}\) such that the nonlinear frequency ratio of the vaX-I vibration system is lowest; the natural frequency of the vaX-I structure is independent of the assembling pattern; however, compared with the normally assembled vaX-I structure, a lower resonant peak of the transmissibility can be obtained for the reverse-assembled structure, which suggests that the nonlinear damping of the vaX-I structure is affected by the assembling pattern. Experiments are carried out to verify the influence of the assembling pattern on the natural frequency and isolation performance of the vaX structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Sun, W.C., Gao, H.J., Kaynak, O.: Adaptive back stepping control for active suspension systems with hard constraints. IEEE/ASME Trans. Mech. 18, 1072–1079 (2013)

    Article  Google Scholar 

  2. Davis, L., Hyland, D., Yen, G., Dask, A.: Adaptive neural control for space structure vibration suppression. Smart Mater. Struct. 8, 753–766 (1999)

    Article  Google Scholar 

  3. Pan, H.H., Sun, W.C., Gao, H.J., Jing, X.J.: Disturbance observer-based adaptive tracking control with actuator saturation and its application. IEEE Trans. Autom. Sci. Eng. 13, 868–875 (2016)

    Article  Google Scholar 

  4. Pan, H.H., Sun, W.C., Gao, H.J., Yu, J.Y.: Finite-time stabilization for vehicle active suspension systems with hard constraints. IEEE Trans. Intell. Transp. Syst. 16, 2663–2672 (2015)

    Article  Google Scholar 

  5. Liu, C.C., Jing, X.J., Steve, D., Li, F.M.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015)

    Article  Google Scholar 

  6. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero-stiffness characteristic. J. Sound Vib. 315, 700–711 (2008)

    Article  Google Scholar 

  7. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Article  Google Scholar 

  8. Rivin, E.I.: Passive Vibration Isolation. ASME Press, New York (2003)

    Book  Google Scholar 

  9. Luo, Q., Li, D., Zhou, W., Jiang, J., Yang, G., Wei, X.: Dynamic modelling and observation of micro-vibrations generated by a Single Gimbal Control Moment Gyro. J. Sound Vib. 332, 4496–4516 (2013)

    Article  Google Scholar 

  10. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration. J. Sound Vib. 326, 88–103 (2009)

    Article  Google Scholar 

  11. Wei, C.F., Jing, X.J.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sustain. Energy Rev. 73, 1–18 (2017)

    Article  Google Scholar 

  12. Huang, X.C., Liu, X.T., Sun, J.Y.: Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76, 1157–1167 (2014)

    Article  MathSciNet  Google Scholar 

  13. Wu, Z.J., Jing, X.J., Bian, J., Li, F.M., Robert, A.: Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspir. Biomim. 10, 056015 (2015)

    Article  Google Scholar 

  14. Lee, C.M., Goverdovskiy, V.N.: A multi-stage high-speed railroad vibration isolation system with “negative” stiffness. J. Sound Vib. 331, 914–921 (2012)

    Article  Google Scholar 

  15. Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332, 3359–3376 (2013)

    Article  Google Scholar 

  16. Sun, X.T., Jing, X.J., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333, 2404–2420 (2014)

    Article  Google Scholar 

  17. Li, Z.C., Zhao, X.D.: New results on robust control for a class of uncertain systems and its applications to Chua’s oscillator. Nonlinear Dyn. 84(4), 1929–1941 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wang, Y., Li, F.M., Wang, Y.Z., Jing, J.X.: Nonlinear responses and stability analysis of viscoelastic nanoplate resting on elastic matrix under 3:1 internal resonances. Int. J. Mech. Sci. 128–129, 94–104 (2017)

    Article  Google Scholar 

  19. Wang, Y., Li, F.M., Wang, Y.Z.: Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method. Chaos 25, 063108 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sun, X.T., Jing, X.J.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66–67, 723–742 (2016)

    Article  Google Scholar 

  21. Ding, H., Zhang, G.C., Chen, L.Q., Yang, S.P.: Forced vibrations of supercritically transporting viscoelastic beams. ASME J. Vib. Acoust. 134, 051007 (2012)

    Article  Google Scholar 

  22. Jing, X.J., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Frequency domain analysis for suppression of output vibration from periodic disturbance using nonlinearities. J. Sound Vib. 314, 536–557 (2008)

    Article  Google Scholar 

  23. Zhou, J.X., Wang, X.L., Xu, D.L., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  24. Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58, 469–485 (2009)

    Article  MathSciNet  Google Scholar 

  25. Zhou, N., Liu, K.: A tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329, 1254–1273 (2010)

    Article  Google Scholar 

  26. Hao, Z.F., Cao, Q.J., Wiercigroch, M.: Two-side damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dyn. 86(4), 2129–2144 (2016)

    Article  Google Scholar 

  27. Liu, C.C., Jing, X.J., Li, F.M.: Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure. Int. J. Mech. Sci. 98, 169–177 (2015)

    Article  Google Scholar 

  28. Zhang, Z., Aglietti, G.S., Zhou, W.: Microvibrations induced by a cantilevered wheel assembly with a soft-suspension system. AIAA J. 49, 1067–1079 (2011)

    Article  Google Scholar 

  29. Carrella, A., Brennan, M.J., Waters, T.P., Shin, K.: On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315, 712–720 (2008)

    Article  Google Scholar 

  30. EL-Sayed, A.T., Bauomy, H.S.: Vibration suppression of subharmonic resonance response using a nonlinear vibration absorber. ASME J. Vib. Acoust. 137, 024503 (2015)

    Article  Google Scholar 

  31. Tian, R.L., Cao, Q.J., Li, Z.X.: Hopf bifurcations for the recently proposed smooth-and-discontinuous oscillator. Chin. Phys. Lett. 27(7), 074701 (2010)

    Article  Google Scholar 

  32. Blob, R.W., Biewener, A.A.: Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis). J. Exp. Biol. 204, 1099–1122 (2001)

    Google Scholar 

  33. Sun, X.T., Jing, X.: A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance band. Mech. Syst. Signal Process. 80, 166–163 (2016)

    Article  Google Scholar 

  34. Liu, C.C., Jing, X.J., Chen, Z.B.: Band stop vibration suppression using a passive X-shape structured lever-type isolation system. Mech. Syst. Signal Process. 68–69, 342–353 (2016)

    Article  Google Scholar 

  35. Sun, X.T., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62–63, 149–163 (2015)

    Article  Google Scholar 

  36. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Berlin (2012)

    Google Scholar 

  37. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, Berlin (2010)

    Google Scholar 

  38. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiely, New York (1979)

    MATH  Google Scholar 

  39. Wang, Y., Li, F.M., Wang, Y.Z.: Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory. Physica E 67, 65–79 (2014)

    Article  Google Scholar 

  40. Jing, X.J., Lang, Z.Q.: Frequency domain analysis and design of nonlinear systems based on volterra series expansion. A parametric characteristic approach. Springer, Switzerland, XV, 331p (2015). https://doi.org/10.1007/978-3-319-12391-2

  41. Milovanovic, Z., Kovacic, I., Brennan, M.J.: On the displacement transmissibility of a base excited viscously damped nonlinear vibration isolator. J. Vib. Acoust. 131, 054502 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from the General Research Fund of Hong Kong RGC (15206717) for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjian Jing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A

The symbol descriptions of the bio-inspired isolation system

Symbol

Structural parameters

M

Mass of isolation object (kg)

\(k_{l}\)

Stiffness of the horizontal spring (N m\(^{-1})\)

\(c_{1}\)

Air damping coefficient (Ns m\(^{-1})\)

\(c_{2}\)

Damping coefficient of friction in joints

 

(Ns m\(^{-1})\)

n

Number of layers

\(a_{1}\), \(b_{1}\), \( a_{2}\), \(b_{2}\)

Rod length (m)

\(\varphi _{1}\), \(\varphi _{2}\)

Variation of the assembly angle (Rad)

\(\alpha _{1}\), \(\alpha _{2}\)

Assembly angle (Rad)

\(s_{1}\), \( s_{2}\)

Rod-length ratio

The expressions of the nonlinear functions in Eq. (11) are expressed as:

$$\begin{aligned} h_1 \left( x \right)= & {} \left( \frac{c_2 \left( {2+6 n} \right) }{4 b_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}\right. \nonumber \\&\left. \qquad +\,6 \frac{c_2 n}{4 a_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}} \right) \nonumber \\&\qquad \left( {\frac{1}{2} \frac{\left( {b_1 +b_2 } \right) \left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) }{b_1 \sqrt{4 b_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}} \right. \nonumber \\&\qquad +\frac{1}{2}\frac{2 b_1 \cos \left( {\alpha _1 } \right) -x}{\sqrt{4 a_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}\nonumber \\&\qquad \left. {+\frac{1}{2}\frac{b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) }{\sqrt{4 a_2 ^{2}b_2 ^{2}-b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}b_1 }} \right) ^{\mathrm {-}2} \end{aligned}$$
(A.1)
$$\begin{aligned} h_2 \left( x \right)= & {} Mn^{2}\left( -\frac{b_1 +b_2 }{b_1 }\frac{1}{\sqrt{4b_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}\right. \nonumber \\&\left. \qquad -\frac{\left( {b_1 +b_2 } \right) \left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}{b_1 ^{4}} \right. \nonumber \\&\qquad \left( {4-\frac{\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}{b_1 ^{2}}} \right) ^{-3/2}\nonumber \\&\qquad -\frac{1}{\sqrt{4 a_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}\nonumber \\&\qquad -\frac{1}{2}\frac{\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) \left( {4 b_1 \cos \left( {\alpha _1 } \right) -2 x} \right) }{\left( {4 a_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}} \right) ^{3/2}}\nonumber \\&\qquad -\frac{b_2 ^{2}}{b_1 \sqrt{4 a_2 ^{2}b_1 ^{2}-b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}\nonumber \\&\qquad \left. -\frac{b_2 ^{4}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}{b_1 ^{4}}\left( 4 a_2 ^{2}\right. \right. \nonumber \\&\left. \left. \qquad -\frac{b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}{b_1 ^{2}} \right) ^{-3/2} \right) \bigg / \nonumber \\&\qquad \left( { \frac{\left( {b_1 +b_2 } \right) \left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) }{b_1 \sqrt{4 b_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}} \right. \nonumber \\&\qquad +\frac{2 b_1 \cos \left( {\alpha _1 } \right) -x}{\sqrt{4 a_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}\nonumber \\&\qquad \left. {+\frac{b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) }{\sqrt{4 a_2 ^{2}b_2 ^{2}-b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}b_1 }} \right) \end{aligned}$$
(A.2)
$$\begin{aligned} h_3 \left( x \right)= & {} {k_l x}\bigg /\left( {\frac{1}{2} \frac{\left( {b_1 +b_2 } \right) \left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) }{b_1 \sqrt{4 b_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}} \right. \nonumber \\&\qquad +\frac{1}{2}\frac{2 b_1 \cos \left( {\alpha _1 } \right) -x}{\sqrt{4 a_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}\nonumber \\&\qquad \left. {+\frac{1}{2}\frac{b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) }{\sqrt{4 a_2 ^{2}b_2 ^{2}-b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}b_1 }} \right) \end{aligned}$$
(A.3)
$$\begin{aligned} h_4 \left( x \right)= & {} {Mn}\bigg /\left( {\frac{1}{2} \frac{\left( {b_1 +b_2 } \right) \left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) }{b_1 \sqrt{4 b_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}} \right. \nonumber \\&\qquad +\frac{1}{2}\frac{2 b_1 \cos \left( {\alpha _1 } \right) -x}{\sqrt{4 a_1 ^{2}-\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}}\nonumber \\&\qquad \left. {+\frac{1}{2}\frac{b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) }{\sqrt{4 a_2 ^{2}b_2 ^{2}-b_2 ^{2}\left( {2 b_1 \cos \left( {\alpha _1 } \right) -x} \right) ^{2}}b_1 }} \right) \end{aligned}$$
(A.4)

Appendix B

The dimensionless variables in Eq. (12) are

$$\begin{aligned} \omega _1= & {} \sqrt{\frac{k_l }{M}} \end{aligned}$$
(B.1)
$$\begin{aligned} \omega _2= & {} \sqrt{\frac{k_{11} }{n^{2}k_l }} \end{aligned}$$
(B.2)
$$\begin{aligned} \xi _0= & {} \frac{1}{2} \frac{C\omega _1 }{n^{2}k_l } \end{aligned}$$
(B.3)
$$\begin{aligned} \xi _1= & {} \frac{1}{2}\frac{p_1 \omega _1 }{n^{2}k_l } \end{aligned}$$
(B.4)
$$\begin{aligned} \xi _2= & {} \frac{1}{2}\frac{p_2 \omega _1 }{n^{2}k_l } \end{aligned}$$
(B.5)
$$\begin{aligned} \xi _1= & {} \frac{1}{2}\frac{p_3 \omega _1 }{n^{2}k_l }\quad 0 \end{aligned}$$
(B.6)
$$\begin{aligned} \gamma _1= & {} \frac{r_1 }{n^{2}k_l } \end{aligned}$$
(B.7)
$$\begin{aligned} \gamma _2= & {} \frac{r_2 }{n^{2}k_l } \end{aligned}$$
(B.8)
$$\begin{aligned} \eta _i= & {} \frac{q_i }{n^{2}M}, \quad i= 0, 1, 2, 3 \end{aligned}$$
(B.9)
$$\begin{aligned} P_i= & {} \frac{F_i }{n^{2}k_l }, \quad i= 1, 2, 3, 4 \end{aligned}$$
(B.10)

where the expressions of the corresponding parameters are

$$\begin{aligned} k_{11}= & {} g_{31} \end{aligned}$$
(B.11)
$$\begin{aligned} C= & {} n^{2}c_1 +g_{10} \end{aligned}$$
(B.12)
$$\begin{aligned} p_i= & {} g_{1i}, \, i = 1, 2, 3 \end{aligned}$$
(B.13)
$$\begin{aligned} r_1= & {} g_{32} \end{aligned}$$
(B.14)
$$\begin{aligned} r_2= & {} g_{33} \end{aligned}$$
(B.15)
$$\begin{aligned} q_i= & {} g_{2i} , \quad i=0, 1, 2, 3 \end{aligned}$$
(B.16)
$$\begin{aligned} F_i= & {} g_{4i} , \quad i=1, 2, 3, 4 \end{aligned}$$
(B.17)
$$\begin{aligned} g_{ij}= & {} {h_i^{(j)} }/{j!}, \quad j = 0, 1, 2, 3 \end{aligned}$$
(B.18)

Here, \(g_{ij} ={h_i^{(j)} }/{j!}\) are all complicated functions; \(g_{3i} \) is a complicated function of \( k_{l}\), \(\alpha _{1}\), \( a_{1}\), \(a_{2}\), \( b_{1}\), \( b_{2}\); \(g_{1i} \) is the function of \(c_{2}\), \(\alpha _{1}\), \( a_{1}\), \(a_{2}\), \( b_{1}\), \( b_{2}\); \(g_{2i} \) and \(g_{4i}\) are the functions of M, n, \(\alpha _{1}\), \( a_{1}\), \(a_{2}\), \( b_{1}\), \( b_{2}\), \(i= 0, 1, 2, 3\).

Appendix C

The explicit form for dimensionless natural frequency \(\omega _{2}\) of the vertical asymmetric structure can be expressed as

$$\begin{aligned} \omega _2= & {} \frac{1}{n^{2}}\left( \frac{\left( {b_1 +b_2 } \right) \cot \left( {\alpha _1 } \right) }{2b_1 }\right. \nonumber \\&\left. +\frac{b_1 \cos \left( {\alpha _1 } \right) }{2\sqrt{a_1^2 -b_1^2 \left( {\cos \left( {\alpha _1 } \right) } \right) ^{2}}}\right. \nonumber \\&\left. + \frac{b_2^2 \cos \left( {\alpha _1 } \right) }{2b_1 \sqrt{a_2^2 -b_2^2 \left( {\cos \left( {\alpha _1 } \right) } \right) ^{2}}} \right) ^{-2} \end{aligned}$$
(C.1)

Then, for vaX-I structure (i.e., \(s_{2}=a_{2}/a_{1}=b_{2}/b_{1}=1\)), \(\omega _{2}\) can be written as

$$\begin{aligned} \omega _2 =\frac{1}{n^{2}}\left( {\cot \left( {\alpha _1 } \right) +\frac{s_1 \cos \left( {\alpha _1 } \right) }{\sqrt{1-s_1^2 \left( {\cos \left( {\alpha _1 } \right) } \right) ^{2}}}} \right) ^{-2} \end{aligned}$$
(C.2)

And for the reverse assembling pattern, the substitution of parameters can be \(\alpha _1 \rightarrow \alpha _2 \), \(s_1 \rightarrow 1/s_1 \). Hence, the expression of natural frequency for the reverse-assembled vaX-I structure can be written as

$$\begin{aligned} \omega _2 =\frac{1}{n^{2}}\left( {\cot \left( {\alpha _2 } \right) +\frac{ \cos \left( {\alpha _2 } \right) }{s_1 \sqrt{1-\left( {\cos \left( {\alpha _2 } \right) } \right) ^{2}/s_1^2 }}} \right) ^{-2} \end{aligned}$$
(C.3)

With the relationship of \(a_1 \cos \left( {\alpha _2 } \right) =b_1 \cos \left( {\alpha _1 } \right) \), Eq. (C.3) can also be expressed as the form of Eq. (C.2). Hence, this fact means that the same natural frequency of the vaX-I structure holds for different assembling patterns.

The natural frequency of the vaX-II structure (i.e., \(s_{1}=b_{1}/a_{1}=b_{2}/a_{2}=1\)) can be written as

$$\begin{aligned} \omega _2 =\frac{1}{n^{2}}\left( {\cot \left( {\alpha _1 } \right) +s_2 \cot \left( {\alpha _1 } \right) } \right) ^{-2} \end{aligned}$$
(C.4)

And the natural frequency of vaX-II with reverse assembling pattern can be obtained by substituting \(s_2 \rightarrow 1/s_2 \) into Eq. C.4), which can be expressed as

$$\begin{aligned} \omega _2 =\frac{1}{n^{2}}\left( {\cot \left( {\alpha _1 } \right) +\frac{\cot \left( {\alpha _1 } \right) }{s_2 }} \right) ^{-2} \end{aligned}$$
(C.5)

Comparison of Eq. (C.4) with Eq. (C.5) illuminates the difference of the natural frequency of vaX-II structure between two assembling patterns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jing, X. & Guo, Y. Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints. Nonlinear Dyn 95, 445–464 (2019). https://doi.org/10.1007/s11071-018-4575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4575-5

Keywords

Navigation