Skip to main content
Log in

Study on weakening optical soliton interaction in nonlinear optics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The interactions between optical solitons have obviously effects on the capacity and quality of communication systems, which will lead to the waveform distortion, deterioration of transmission characteristics, reduction in transmission rate and shortening of the transmission distance. In this paper, we will discuss the optical soliton interactions and reduce their interactions to improve the communication quality. The analytic two soliton solutions are derived based on the bilinear method. Four kinds of interactions between optical solitons are analyzed, and the reasons for reducing the interactions between them are obtained. The conclusions of this paper are helpful to enhance the communication quality and provide theoretical support for nonlinear control methods in nonlinear optical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability and material

The authors declare that all data generated or analyzed during this study are included in this article.

References

  1. Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546(7657), 274–279 (2017)

    Article  Google Scholar 

  2. Leo, F., Coen, S., Kockaert, P., Gorza, S.P., Emplit, P., Haelterman, M.: Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4(7), 471–476 (2010)

    Article  Google Scholar 

  3. Temprana, E., Myslivets, E., Kuo, B.P., Liu, L., Ataie, V., Alic, N., Radic, S.: Overcoming Kerr-induced capacity limit in optical fiber transmission. Science 348(6242), 1445–1448 (2015)

    Article  Google Scholar 

  4. Liu, X.Y., Zhang, H.X., Liu, W.J.: The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 102, 305–312 (2022)

    Article  MathSciNet  Google Scholar 

  5. Inc, M., Houwe, A., Bicer, H.: Ellipticity angle effect on exact optical solitons and modulation instability in birefringent fiber. Opt. Quant. Electron. 53(11), 634 (2021)

    Article  Google Scholar 

  6. Ma, G.L., Zhao, J.B., Zhou, Q., Biswas, A., Liu, W.J.: Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrödinger equation. Nonlinear Dyn. 106, 2479–2484 (2021)

    Article  Google Scholar 

  7. Wang, L.L., Liu, W.J.: Stable soliton propagation in a coupled (2+1)-dimensional Ginzburg-Landau system. Chin. Phys. B 29(7), 070502 (2020)

    Article  Google Scholar 

  8. Yan, Y.Y., Liu, W.J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation. Chin. Phys. Lett. 38(9), 094201 (2021)

    Article  Google Scholar 

  9. Liu, M., Wu, H., Liu, X., Wang, Y., Lei, M., Liu, W., Guo, W., Wei, Z.: Optical properties and applications of SnS\(_{2}\) SAs with different thickness. Opto-Electron. Adv. 4(10), 200029 (2021)

    Article  Google Scholar 

  10. Liu, W., Shi, T., Liu, M., Wang, Q., Liu, X., Zhou, Q., Lei, M., Lu, P., Yu, L., Wei, Z.: Nonlinear optical property and application of yttrium oxide in erbium-doped fiber lasers. Opt. Express 29(18), 29402–29411 (2021)

    Article  Google Scholar 

  11. Liu, X., Liu, M., Wang, Y., Huang, K., Lei, M., Liu, W., Wei, Z.: Mode-locked all-fiber laser with high stability based on cobalt oxyfluoride. Chin. Opt. Lett. 19(8), 081902 (2021)

    Article  Google Scholar 

  12. Wang, Y., Hou, S., Yu, Y., Liu, W., Yan, P., Yang, J.: Photonic device combined optical microfiber coupler with saturable-absorption materials and its application in mode-locked fiber laser. Opt. Express 29(13), 20526–20534 (2021)

    Article  Google Scholar 

  13. Pang, L., Sun, Z., Zhao, Q., Wang, R., Yuan, L., Wu, R., Lv, Y., Liu, W.: Ultrafast photonics of ternary Re\(_{x}\)Nb\(_{(1--x)}\)S\(_{2}\) in fiber lasers. ACS Appl. Mater. Inter. 13(24), 28721–28728 (2021)

    Article  Google Scholar 

  14. Li, L., Pang, L., Wang, Y., Liu, W.: W\(_{x}\)Nb\(_{(1--x)}\)Se\(_{2}\) nanosheets for ultrafast photonics. Nanoscale 13(4), 2511–2518 (2021)

    Article  Google Scholar 

  15. Lan, Z.Z., Guo, B.L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schrodinger-Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100, 3771–3784 (2020)

    Article  Google Scholar 

  16. Zhao, X.H.: Dark soliton solutions for a coupled nonlinear Schrodinger system. Appl. Math. Lett. 121, 107383 (2021)

    Article  MathSciNet  Google Scholar 

  17. Dong, S., Lan, Z.Z., Gao, B., Shen, Y.J.: Backlund transformation and multi-soliton solutions for the discrete Korteweg-de Vries equation. Appl. Math. Lett. 125, 107747 (2022)

    Article  Google Scholar 

  18. Choi, M.R., Kang, Y., Lee, Y.R.: On dispersion managed nonlinear Schrodinger equations with lumped amplification. J. Math. Phys. 62(7), 071506 (2021)

    Article  MathSciNet  Google Scholar 

  19. Hu, H., Oxenlowe, L.K.: Chip-based optical frequency combs for high-capacity optical communications. Nanophotonics 10(5), 1367–1385 (2021)

    Article  Google Scholar 

  20. Wang, L., Luan, Z.T., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.J.: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrodinger equation with the four-wave mixing term. Nonlinear Dyn. 104(3), 2613–2620 (2021)

    Article  Google Scholar 

  21. Wang, H., Zhou, Q., Biswas, A., Liu, W.: Localized waves and mixed interaction solutions with dynamical analysis to the Gross-Pitaevskii equation in the Bose-Einstein condensate. Nonlinear Dyn. 106(1), 841–854 (2021)

    Article  Google Scholar 

  22. Yu, W., Zhang, H., Wazwaz, A.M., Liu, W.: The collision dynamics between double-hump solitons in two mode optical fibers. Results Phys. 28, 104618 (2021)

    Article  Google Scholar 

  23. Ma, G., Zhou, Q., Yu, W., Biswas, A., Liu, W.: Stable transmission characteristics of double-hump solitons for the coupled Manakov equations in fiber lasers. Nonlinear Dyn. 106, 2509–2514 (2021)

    Article  Google Scholar 

  24. Wang, L., Luan, Z., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrodinger equation with the four-wave mixing term. Nonlinear Dyn. 104(3), 2613–2620 (2021)

    Article  Google Scholar 

  25. Wang, L., Luan, Z., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: Effects of dispersion terms on optical soliton propagation in a lossy fiber system. Nonlinear Dyn. 104(1), 629–637 (2021)

    Article  Google Scholar 

  26. Liu, X., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: The similarities and differences of different plane solitons controlled by (3+1)-dimensional coupled variable coefficient system. J. Adv. Res. 24, 167–173 (2020)

    Article  Google Scholar 

  27. Kumar, S., Hasegawa, A.: Quasi-soliton propagation in dispersion-managed optical fibers. Opt. Lett. 22(6), 372–374 (1997)

    Article  Google Scholar 

  28. Akhmediev, N.N., Ankiewicz, A., Soto-Crespo, J.M.: Stable soliton pairs in optical transmission lines and fiber lasers. J. Opt. Soc. Am. B. 15(2), 515–523 (1998)

    Article  MathSciNet  Google Scholar 

  29. Rajan, M.S.M., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79(4), 2469–2484 (2015)

    Article  MathSciNet  Google Scholar 

  30. Menyuk, C.R., Marks, B.S.: Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems. J. Lightwave Technol. 24(7), 2806–2826 (2006)

    Article  Google Scholar 

  31. Liu, W.J., Zhang, Y.J., Triki, H., Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A., Belic, M.: Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dyn. 95(1), 557–563 (2019)

    Article  Google Scholar 

  32. Nakazawa, M., Yoshida, E.: A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser. IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000)

    Article  Google Scholar 

  33. Serkin, V.N., Matsumoto, M., Belyaeva, T.L.: Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers. Opt. Commun. 196(1–6), 159–171 (2001)

    Article  Google Scholar 

  34. Liu, X.Y., Triki, H., Zhou, Q., Liu, W.J., Biswas, A.: Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn. 94(1), 703–709 (2018)

    Article  Google Scholar 

  35. Liang, A.H., Toda, H., Hasegawa, A.: High-speed soliton transmission in dense periodic fibers. Opt. Lett. 24(12), 799–801 (1999)

    Article  Google Scholar 

  36. Huang, Z., Xu, J., Sun, B.: A new solution of Schrodinger equation based on symplectic algorithm. Comput. Math. Appl. 69(11), 1303–1312 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zhong, Z.L.: Dark solitonic interactions for the (3+1)-dimensional coupled nonlinear Schrodinger equations in nonlinear optical fibers. Opt. Laser Technol. 113, 462–466 (2019)

    Article  Google Scholar 

  38. Yu, W.T., Liu, W.J., Triki, H., Zhou, Q., Biswas, A.: Phase shift, oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schrodinger equation in an optical fiber communication system. Nonlinear Dyn. 97, 1253–1262 (2019)

    Article  Google Scholar 

  39. Liu, W.J., Lei, M.: Types of coefficient constraints of coupled nonlinear Schrodinger equations for elastic and inelastic interactions between spatial solitons with symbolic computation. Nonlinear Dyn. 76(4), 1935–1941 (2014)

    Article  MathSciNet  Google Scholar 

  40. Hirota, R.: The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (2004)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (11875009, 11905016), by a Project of Shandong Province Key R&D Program Project (2019GSF109105) and Shandong Province Higher Educational Science and Technology Program (J18KB108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Ethical approval

The authors declare that they have adhered to the ethical standards of research execution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Chen, L., Ma, G. et al. Study on weakening optical soliton interaction in nonlinear optics. Nonlinear Dyn 108, 2483–2488 (2022). https://doi.org/10.1007/s11071-022-07305-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07305-w

Keywords

Navigation