Skip to main content
Log in

Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing (FWM) term is studied in this paper, which describes the optical solitons in a birefringent fiber. By virtue of the Hirota method, the one- and two-soliton solutions are derived. On the basis of solutions obtained, we discuss how the values of the FWM and some free parameters affect the solitons’ peformance. The FWM parameter can help to control the amplitude of the solitons. Meanwhile, by setting the values of certain free parameters, we can control the solitons’ propagation direction and speed, and reduce the interactions between them as well. In addition, the energy transfer of solitons during elastic collision and separation is also discussed. The conclusions here may be useful in improving the communication quality in multi-mode fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kanna, T., Lakshmanan, M.: Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86(22), 5043–5046 (2001)

    Article  Google Scholar 

  2. Biswas, A., Triki, H., Zhou, Q., Moshokoa, S.P., Ullah, M.Z., Belic, M.: Cubic-quartic optical solitons in Kerr and power law media. Optik 144, 357–362 (2017)

    Article  Google Scholar 

  3. Wong, P., Liu, W.J., Huang, L.G., Li, Y.Q., Pan, N., Lei, M.: Higher-order-effects management of soliton interactions in the Hirota equation. Phys. Rev. E 91(3), (2015)

    Article  MathSciNet  Google Scholar 

  4. Wazwaz, A.M.: New (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painleve integrability. Phys. Lett. A 384(32), (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wazwaz, A.M.: New integrable (2+1)- and (3+1)-dimensional sinh-Gordon equations with constant and time-dependent coefficients. Phys. Lett. A 384(23), (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100(4), 3711–3716 (2020)

    Article  Google Scholar 

  7. Wazwaz, A.M.: Painleve analysis for Boiti-Leon-Manna-Pempinelli equation of higher dimensions with time-dependent coefficients: Multiple soliton solutions. Phys. Lett. A 384(16), (2020)

    Article  MathSciNet  Google Scholar 

  8. Ren, B., Lin, J., Lou, Z.M.: Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation. Appl. Math. Lett. 105, (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, X.W., Lin, J.: Rogue wave, interaction solutions to the KMM system. J. Magn. Magn. Mater. 502, (2020)

    Article  Google Scholar 

  10. Blow, K.J., Doran, N.J., Nayar, B.K.: Experimental demonstration of optical soliton switching in an all-fiber nonlinear sagnac interferometer. Opt. Lett. 14(14), 754–756 (1989)

    Article  Google Scholar 

  11. Jacob, J.M., Golovchenko, E.A., Pilipetskii, A.N., Carter, G.M., Menyuk, C.R.: Experimental demonstration of soliton transmission over 28 Mm using mostly normal dispersion fiber. IEEE. Photonic. Tech. L. 9(1), 130–132 (1997)

    Article  Google Scholar 

  12. Xu, W.C., Guo, Q., Liu, S.H.: Higher-order dispersion and soliton pulse compression in the dispersion-decreasing fibers. Chin. Phys. Lett. 14(4), 298 (2008)

    Google Scholar 

  13. Abbagari, S., Alphonse, H., Mukam, S.P., Inc, M., Serge, D.Y., Bouetou, T.B.: Miscellaneous optical solitons in magneto-optic waveguides associated to the influence of the cross-phase modulation in instability spectra. Phys. Scr. 96(4), (2021)

    Article  Google Scholar 

  14. Gao, P., Duan, L., Yao, X.K., Yang, Z.Y., Yang, W.L.: Controllable generation of several nonlinear waves in optical fibers with third-order dispersion. Phys. Rev. A 103(2), (2021)

    Article  Google Scholar 

  15. Kohl, R., Biswas, A., Milovic, D., Zerrad, E.: Optical soliton perturbation in a non-Kerr law media. Opt. Laser. Technol. 40(4), 647–662 (2008)

    Article  Google Scholar 

  16. Gepreel, K.A.: Exact Soliton Solutions for Nonlinear Perturbed Schrodinger Equations with Nonlinear Optical Media. Appl. Sci-Basel. 10(24), 8929 (2020)

    Article  Google Scholar 

  17. Karpov, M., Pfeiffer, M.H.P., Guo, H.R., Weng, W.L., Liu, J.Q., Kippenberg, T.J.: Dynamics of soliton crystals in optical microresonators. Nat. Phys. 15(10), 1071 (2019)

    Article  Google Scholar 

  18. Yepez-Martinez, H., Gomez-Aguilar, J.F.: M-derivative applied to the dispersive optical solitons for the Schrödinger-Hirota equation. Eur. Phys. J. Plus 134(3), 93 (2019)

    Article  Google Scholar 

  19. Sakaguchi, H., Malomed, B.A.: Interactions of solitons with positive and negative masses: Shuttle motion and coacceleration. Phys. Rev. E 99(2), (2019)

    Article  Google Scholar 

  20. Wazwaz, A.M.: A study on a two-wave mode Kadomtsev-Petviashvili equation: conditions for multiple soliton solutions to exist. Math. Method. Appl. Sci. 40(11), 4128–4133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1–6 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wazwaz, A.M.: Multiple soliton solutions and other exact solutions for a two-mode KdV equation. Math. Method. Appl. Sci. 40(6), 2277–2283 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Liu, W.J., Zhang, Y.J., Wazwaz, A.M., Zhou, Q.: Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber. Appl. Math. Comput. 361, 325–331 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Guan, X., Liu, W.J., Zhou, Q., Biswas, A.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98(2), 1491–1500 (2019)

    Article  Google Scholar 

  25. Liu, S.Z., Zhou, Q., Biswas, A., Liu, W.J.: Phase-shift controlling of three solitons in dispersion-decreasing fibers. Nonlinear Dyn. 98(1), 395–401 (2019)

    Article  MATH  Google Scholar 

  26. Yan, Y.Y., Liu, W.J.: Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects. Appl. Math. Lett. 98, 171–176 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, X.Y., Liu, W.J., Triki, H., Zhou, Q., Biswas, A.: Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 96(2), 801–809 (2019)

    Article  MATH  Google Scholar 

  28. Liu, W.J., Zhang, Y.J., Luan, Z.T., Zhou, Q., Mirzazadeh, M., Ekici, M., Biswas, A.: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96(1), 729–736 (2019)

    Article  MATH  Google Scholar 

  29. Yang, C.Y., Liu, W.J., Zhou, Q., Mihalache, D., Malomed, B.A.: One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95(1), 369–380 (2019)

    Article  Google Scholar 

  30. Agrawal, G. P.: Nonlinear fiber optics. Lecture Notes in Physics. 18(1), 8–12 (2001)

  31. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1999)

    Article  Google Scholar 

  32. Agalarov, A., Zhulego, V., Gadzhimuradov, T.: Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrödinger equations. Phys. Rev. E 91(4), (2015)

    Article  MathSciNet  Google Scholar 

  33. Scott, Alwyn C.: Launching a davydov soliton i soliton analysis. Phys. Scr. 29(3), 279–283 (1984)

    Article  Google Scholar 

  34. Lazarides, N., Tsironis, G.P.: Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials. Phys. Rev. E 71(2), (2005)

    Article  Google Scholar 

  35. Som, B.K., Gupta, M.R., Dasgupta, B.: Coupled nonlinear Schrödinger equation for langmuir and dispersive ion acoustic waves. Phys. Lett. A 72(2), 111–114 (1979)

    Article  MathSciNet  Google Scholar 

  36. Ajmani, M., Singh, P., Kaur, P.: Hybrid dispersion compensating modules: a better solution for mitigating four-wave mixing effects. Wireless. Pers. Commun. 107(2), 959–971 (2019)

    Article  Google Scholar 

  37. Ghatak, A., Thyagarajan, K.: Recent advances in fiber optics. IETE. Tech. Rev. 14(1–2), 21–31 (1997)

    Article  Google Scholar 

  38. Ahmed, J., Hussain, A., Siyal, M.Y., Manzoor, H., Masood, A.: Parametric analysis of four wave mixing in DWDM systems. Optik 125(7), 1853–1859 (2014)

    Article  Google Scholar 

  39. Betti, S., Giaconi, M., Nardini, M.: Effect of four-wave mixing on WDM optical systems: a statistical analysis. IEEE. Photonic. Tech. L. 15(8), 1079–1081 (2003)

    Article  Google Scholar 

  40. Xing, L., Peng, M.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications. Nonlinear Dyn. 73(1–2), 405–410 (2013)

    MATH  Google Scholar 

  41. Wang, D.S., Zhang, D.J., Yang, J.K.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51(2), (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Priya, N.V., Senthilvelan, M.: Higher order rogue wave solutions of general coupled nonlinear Schrödinger equations. Phys. Scr. 90(2), (2015)

    Article  Google Scholar 

  43. Gadzhimuradov, T.A., Abdullaev, G.O., Agalarov, A.M.: Vector dark solitons with oscillating background density. Nonlinear Dyn. 89(4), 2695–2702 (2017)

    Article  MathSciNet  Google Scholar 

  44. Priya, N.V., Senthilvelan, M.: Higher order rogue wave solutions of general coupled nonlinear Schrödinger equations. Phys. Scr. 90(2), 025203 (2015)

  45. Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations. Phys. Rev. A 77(1), (2008)

    Article  Google Scholar 

  46. Yuan, Y.Q., Tian, B., Chai, H.P., Wu, X.Y., Du, Z.: Vector semirational rogue waves for a coupled nonlinear Schrödinger system in a birefringent fiber. Appl. Math. Lett. 87, 50–56 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero-Bogoyavlenskii-Schiff equation. Nonlinear Dyn. 89(3), 1727–1732 (2017)

  49. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88(4), 3017–3021 (2017)

    Article  MathSciNet  Google Scholar 

  50. Guan, X., Liu, W.J., Zhou, Q., Biswas, A.: Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Comput. 366, (2020)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, H.Q., Meng, X.H., Xu, T., Li, L.L., Tian, B.: Interactions of bright solitons for the (2+1)-dimensional coupled nonlinear Schrödinger equations from optical fibres with symbolic computation. Phys. Scr. 75(4), 537–542 (2007)

  52. Wang, M., Shan, W.R., Lu, X., Xue, Y.S., Lin, Z.Q., Tian, B.: Soliton collision in a general coupled nonlinear Schrödinger system via symbolic computation. Appl. Math. Comput. 219(24), 11258–11264 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 11905009, 11875008, 12075034), by the Beijing Youth Top-notch Talent Support Program (Grant No. 2017000026833 ZK08), and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant No. IPOC2017ZZ05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Luan, Z., Zhou, Q. et al. Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrödinger equation with the four-wave mixing term. Nonlinear Dyn 104, 2613–2620 (2021). https://doi.org/10.1007/s11071-021-06411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06411-5

Keywords

Navigation