Skip to main content
Log in

Effects of dispersion terms on optical soliton propagation in a lossy fiber system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a variable-coefficient nonlinear Schrödinger equation that describes the optical soliton propagation in dispersion management fiber systems is studied. Two- and three-soliton solutions are obtained by using the Hirota bilinear method. Based on those solutions, the effects of related parameters on optical soliton propagation are discussed. By choosing different values of the third-order dispersion, the amplification of optical solitons can be realized. In addition, the interactions among the solitons can be reduced by setting a proper value of the group velocity dispersion. The results of this paper may be helpful to design optical amplifiers or to improve the quality of optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang, W.Q., Gui, T., Zhang, Q., Lu, C., Monro, T.M., Chan, T.H., Lau, A.P.T., Afshar, V.: Correlated eigenvalues of multi-soliton optical communications. Sci. Rep. 9, 6399 (2019)

    Article  Google Scholar 

  2. Ghatak, A., Thyagarajan, K.: Recent advances in fiber optics. IETE. Tech. Rev. 14, 0256–4602 (1997)

    Article  Google Scholar 

  3. Akira, H., Frederick, T.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. Appl. Phys. Lett. 23, 1 (1973)

    Article  Google Scholar 

  4. Wazwaz, A.M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions. Nonlinear Dyn. 87, 2457–2461 (2017)

    Article  MathSciNet  Google Scholar 

  5. Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87, 1685–1691 (2017)

    Article  MathSciNet  Google Scholar 

  6. Wazwaz, A.M.: New (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painleve integrability. Phys. Lett. A 384, 126787 (2020)

    Article  MathSciNet  Google Scholar 

  7. Wazwaz, A.M.: Two new integrable Kadomtsev-Petviashvili equations with time-dependent coefficients: multiple real and complex soliton solutions. Wave. Random Complex 30, 776–786 (2020)

    Article  MathSciNet  Google Scholar 

  8. Wazwaz, A.M.: New integrable (2+1)- and (3+1)-dimensional sinh-Gordon equations with constant and time-dependent coefficients. Phys. Lett. A 384, 126529 (2020)

    Article  MathSciNet  Google Scholar 

  9. Wazwaz, A.M.: New integrable (2+1) -dimensional sine -Gordon equations with constant and time -dependent coefficients: Multiple optical kink wave solutions. Optik 216, 164640 (2020)

    Article  Google Scholar 

  10. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

  11. Wazwaz, A.M.: Painleve analysis for Boiti-Leon-Manna-Pempinelli equation of higher dimensions with time-dependent coefficients: Multiple soliton solutions. Phys. Lett. A 384, 126310 (2020)

    Article  MathSciNet  Google Scholar 

  12. Subramanian, K., Alagesan, T., Mahalingam, A., Rajan, M.S.M.: Propagation properties of optical soliton in an erbium-doped tapered parabolic index nonlinear fiber: soliton control. Nonlinear Dyn. 87, 1575–1587 (2017)

    Article  Google Scholar 

  13. Kuo, C.K.: Resonant multi-soliton solutions to the (2+1)-dimensional Sawada-Kotera equations via the simplified form of the linear superposition principle. Phys. Scr. 94, 085218 (2019)

    Article  Google Scholar 

  14. Nguyen, Q.M., Huynh, T.T.: Frequency shifting for solitons based on transformations in the Fourier domain and applications. Appl. Math. Model. 72, 306–323 (2019)

    Article  MathSciNet  Google Scholar 

  15. Liu, W.J., Zhang, Y.J., Luan, Z.T., Zhou, Q., Mirzazadeh, M., Ekici, M., Biswas, A.: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96, 729–736 (2019)

    Article  Google Scholar 

  16. Zhang, Y.J., Yang, C.Y., Yu, W.T., Liu, M.L., Ma, G.L., Liu, W.J.: Some types of dark soliton interactions in inhomogeneous optical fibers. Opt. Quant. Electron. 50, 295 (2018)

    Article  Google Scholar 

  17. Wei, Z.W., Liu, M., Ming, S.X., Cui, H., Luo, A.P., Xu, W.C., Luo, Z.C.: Exploding soliton in an anomalous-dispersion fiber laser. Opt. Lett. 45, 531–534 (2020)

    Article  Google Scholar 

  18. Yildirim, Y., Biswas, A., Khan, S., Alshomrani, A.S., Belic, M.R.: Optical solitons with differential group delay for complex Ginzburg-Landau equation having Kerr and parabolic laws of refractive index. Optik 202, 163737 (2020)

    Article  Google Scholar 

  19. Arshed, S., Raza, N.: Optical solitons perturbation of Fokas-Lenells equation with full nonlinearity and dual dispersion. Chinese J. Phys. 63, 314–324 (2020)

    Article  MathSciNet  Google Scholar 

  20. Sulaiman, T.A., Bulut, H.: Optical solitons and modulation instability analysis of the (1+1)-dimensional coupled nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 025003 (2020)

    Article  Google Scholar 

  21. Wong, P., Liu, W.J., Huang, L.G., Li, Y.Q., Pan, N., Lei, M.: Higher-order-effects management of soliton interactions in the Hirota equation. Phys. Rev. E 91, 033201 (2015)

    Article  MathSciNet  Google Scholar 

  22. Gao, W., Ismael, H.F., Bulut, H., Baskonus, H.M.: Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media. Phys. Scr. 95, 035207 (2020)

    Article  Google Scholar 

  23. Yang, C., Y., Li, W. Y., Yu, W. T., Liu, M. L., Zhang, Y. J., Ma, G. L., Lei, M., Liu, W. J.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn. 92, 203-213 (2018)

  24. Liu, W.J., Zhang, Y.J., Triki, H., Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A., Belic, M.: Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dyn. 95, 557–563 (2019)

    Article  Google Scholar 

  25. Zhou, G., Gui, T., Lu, C., Lau, A.P.T., Wai, P.K.A.: Improving soliton transmission systems through soliton interactions. J. Light. Technol. 38, 3563–3572 (2020)

    Article  Google Scholar 

  26. Ahmed, I., Seadawy, A.R., Lu, D.C.: The interaction of W-shaped rational solitons with kink wave for the nonlinear Schrödinger equation with anti-cubic nonlinearity. Mod. Phys. Lett. B 34, 2050122 (2020)

    Article  Google Scholar 

  27. Liu, W.J., Meng, X.H., Cai, K.J., Lu, X., Xu, T., Tian, B.: Analytic study on soliton-effect pulse compression in dispersion-shifted fibers with symbolic computation. J. Mod. Opt. 55, 1331–1344 (2008)

    Article  Google Scholar 

  28. Triki, H., Kruglov, V., I.: Propagation of dipole solitons in inhomogeneous highly dispersive optical-fiber media. Phys. Rev. E 101, 042220 (2020)

  29. Peleg, A., Chakraborty, D.: Radiation dynamics in fast soliton collisions in the presence of cubic loss. Physica D 406, 132397 (2020)

    Article  MathSciNet  Google Scholar 

  30. Porsezian, K., Hasegawa, A., Serkin, V.N., Belyaeva, T.L., Ganapathy, R.: Dispersion and nonlinear management for femtosecond optical solitons. Phys. Lett. A 361, 504–508 (2007)

    Article  Google Scholar 

  31. Nandy, S., Barthakur, A.: Pairwise three soliton interactions, soliton logic gates in coupled nonlinear Schrödinger equation with variable coefficients. Nonlinear. Sci. 69, 370–385 (2019)

  32. Yang, C.Y., Liu, W.J., Zhou, Q., Mihalache, D., Malomed, B.A.: One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95, 369–380 (2019)

    Article  Google Scholar 

  33. Jahnke, T., Mikl, M.: Adiabatic exponential midpoint rule for the dispersion-managed nonlinear Schrödinger equation. Ima. J. Numer. Anal. 39, 1818–1859 (2019)

    Article  MathSciNet  Google Scholar 

  34. Moubissi, A.B., Ekogo, T.B., Sanvany, S.D.B., Membetsi, Z.H.M., Dikande, A.M.: Averaged-dispersion management for ultrashort soliton molecule propagation in lossy fibre systems. Opt. Commun. 431, 187–195 (2019)

    Article  Google Scholar 

  35. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)

    Article  MathSciNet  Google Scholar 

  36. Hirota, R., Ohta, Y.: Hierarchies of coupled soliton equations. I. J. Phys. Soc. Jpn. 60, 798–809 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (11905009,11875008,12075034); Beijing Youth Top-notch Talent Support Program (2017000026833ZK08); Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications (IPOC2019ZZ01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Luan, Z., Zhou, Q. et al. Effects of dispersion terms on optical soliton propagation in a lossy fiber system. Nonlinear Dyn 104, 629–637 (2021). https://doi.org/10.1007/s11071-021-06283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06283-9

Keywords

Navigation