Skip to main content

Advertisement

Log in

Frequency–energy plot and targeted energy transfer analysis of coupled bistable nonlinear energy sink with linear oscillator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear energy sink (NES), which is proven to perform rapid and passive targeted energy transfer (TET), has been employed for vibration mitigation in many primary small- and large-scale structures. Recently, the feature of bistability, in which two nontrivial stable equilibria and one trivial unstable equilibrium exist, is utilized for passive TET in what is known as bistable NES (BNES). The BNES generates a nonlinear force that incorporates negative linear and multiple positive or negative nonlinear stiffness components. In this paper, the BNES is coupled to a linear oscillator (LO) where the dynamic behavior of the resulting LO-BNES system is studied through frequency–energy plots (FEPs), which are generated by analytical approximation using the complexification-averaging method and by numerical continuation techniques. The effect of the length and stiffness of the transverse coupling springs is found to affect the stability and topology of the branches and indicates the importance of the exact physical realization of the system. The rich nonlinear dynamical behavior of the LO-BNES system is also highlighted through the appearance of multiple symmetrical and unsymmetrical in- and out-of-phase backbone branches, especially at low energy levels. The superimposed wavelet frequency spectrums of the LO-BNES response on the FEP have verified the robustness of the TET mechanism where the role of the unsymmetrical NNM backbones in TET is clearly observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  2. Gendelman, O., Manevitch, L., Vakakis, A.F., Mcloskey, R.: Energy pumping in nonlinear mechanical oscillators: Part I dynamics of the underlying hamiltonian systems. J. Appl. Mech. 68(1), 34–41 (2001). https://doi.org/10.1115/1.1345524

    Article  MathSciNet  MATH  Google Scholar 

  3. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II resonance capture. J. Appl. Mech. 68(1), 42–48 (2001). https://doi.org/10.1115/1.1345525

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee, Y.S., Kerschen, G., Vakakis, A.F., Panagopoulos, P., Bergman, L., McFarland, D.M.: Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Phys. D 204(1–2), 41–69 (2005). https://doi.org/10.1016/j.physd.2005.03.014

    Article  MathSciNet  MATH  Google Scholar 

  5. Quinn, D.D., Gendelman, O., Kerschen, G., Sapsis, T.P., Bergman, L.A., Vakakis, A.F.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1: 1 resonance captures: Part I. J. Sound Vib. 311(3–5), 1228–1248 (2008). https://doi.org/10.1016/j.jsv.2007.10.026

    Article  Google Scholar 

  6. Sapsis, T., Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Kerschen, G., Quinn, D.: Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1: 1 resonance captures: Part II, analytical study. J. Sound Vib. 325(1–2), 297–320 (2009). https://doi.org/10.1016/j.jsv.2009.03.004

    Article  Google Scholar 

  7. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.-H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007). https://doi.org/10.1016/j.jsv.2006.06.074

    Article  Google Scholar 

  8. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Non-Linear Mech. 40(6), 891–899 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.11.001

    Article  MATH  Google Scholar 

  9. Sapsis, T.P., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachment. J. Vib. Acoust. ASME 134(1), 011016 (2012). https://doi.org/10.1115/1.4005005

    Article  Google Scholar 

  10. Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85, 893–911 (2016). https://doi.org/10.1007/s11071-016-2731-3

    Article  MathSciNet  Google Scholar 

  11. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: transient responses. J. Sound Vib. 333(20), 4859–4880 (2014). https://doi.org/10.1016/j.jsv.2014.05.010

    Article  Google Scholar 

  12. Lo Feudo, S., Touzé, C., Boisson, J., Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi–storey structure. J. Sound Vib. 438, 33–53 (2019). https://doi.org/10.1016/j.jsv.2018.09.007

    Article  Google Scholar 

  13. Ahmadi, M., Attari, N.K., Shahrouzi, M.: Structural seismic response mitigation using optimized vibro-impact nonlinear energy sinks. J. Earthquake Eng. 19(2), 193–219 (2015). https://doi.org/10.1080/13632469.2014.962671

    Article  Google Scholar 

  14. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331(21), 4599–4608 (2012). https://doi.org/10.1016/j.jsv.2012.05.021

    Article  Google Scholar 

  15. Li, T., Lamarque, C.H., Seguy, S., Berlioz, A.: Chaotic characteristic of a linear oscillator coupled with vibro-impact nonlinear energy sink. Nonlinear Dyn. 91, 2319–2330 (2018). https://doi.org/10.1007/s11071-017-4015-y

    Article  Google Scholar 

  16. Li, T., Seguy, S., Berlioz, A.: On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn. 87, 1453–1466 (2017). https://doi.org/10.1007/s11071-016-3127-0

    Article  Google Scholar 

  17. Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87, 2415–2433 (2017). https://doi.org/10.1007/s11071-016-3200-8

    Article  Google Scholar 

  18. Pennisi, G., Stephan, C., Gourc, E., Michon, G.: Experimental investigation and analytical description of a vibro-impact NES coupled to a single-degree-of-freedom linear oscillator harmonically forced. Nonlinear Dyn. 88, 1769–1784 (2017). https://doi.org/10.1007/s11071-017-3344-1

    Article  Google Scholar 

  19. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers. J. Sound Vib. 389, 52–72 (2017). https://doi.org/10.1016/j.jsv.2016.11.003

    Article  Google Scholar 

  20. Li, W., Wierschem, N.E., Li, X., Yang, T.: On the energy transfer mechanism of the single-sided vibro-impact nonlinear energy sink. J. Sound Vib. 437, 166–179 (2018). https://doi.org/10.1016/j.jsv.2018.08.057

    Article  Google Scholar 

  21. Al-Shudeifat, M.A., Saeed, A.S.: Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs. Mecannica (2020). https://doi.org/10.1007/s11012-020-01193-3

    Article  Google Scholar 

  22. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.A., AL- Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink. Nonlinear Dyn. 69, 1693–1704 (2012). https://doi.org/10.1007/s11071-012-0379-1

    Article  MathSciNet  Google Scholar 

  23. AL-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and experimental investigations of a rotating nonlinear energy sink. Meccanica 52, 763–779 (2017). https://doi.org/10.1007/s11012-016-0422-2

    Article  Google Scholar 

  24. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.A., Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling. Chaos Interdiscip. J. Nonlin. Sci. 22(1), 013118 (2012). https://doi.org/10.1063/1.3683480

    Article  MathSciNet  MATH  Google Scholar 

  25. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79(1), 011012 (2011). https://doi.org/10.1115/1.4005402

    Article  Google Scholar 

  26. Vorotnikov, K., Starosvetsky, Y.: Nonlinear energy channeling in the two-dimensional, locally resonant, unit-cell model. I. High energy pulsations and routes to energy localization. Chaos Interdiscip. J. Nonlin. Sci. 25(7), 073106 (2015). https://doi.org/10.1063/1.4922964

    Article  MathSciNet  MATH  Google Scholar 

  27. Jayaprakash, K.R., Starosvetsky, Y.: Three-dimensional energy channeling in the unit-cell model coupled to a spherical rotator I: bidirectional energy channeling. Nonlinear Dyn. 89, 2013–2040 (2017). https://doi.org/10.1007/s11071-017-3568-0

    Article  MathSciNet  Google Scholar 

  28. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear sink of robust performance. Int. J. Non-Linear Mech. 117, 103249 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103249

    Article  Google Scholar 

  29. Saeed, A.S., AL-Shudeifat, M.A., Cantwell, W.J., Vakakis, A.F.: Rotary-impact nonlinear energy sink for shock mitigation: analytical and numerical investigations. Arch. Appl. Mech. 90, 495–521 (2020). https://doi.org/10.1007/s00419-019-01622-0

    Article  Google Scholar 

  30. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: Analytical study. J. Appl. Mech. 81(4), 041011 (2014). https://doi.org/10.1115/1.4025150

    Article  Google Scholar 

  31. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: Numerical study. J. Comput. Nonlinear Dyn. 10(1), 011007 (2015). https://doi.org/10.1115/1.4027224

    Article  Google Scholar 

  32. AL-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  33. AL-Shudeifat, M.A., Saeed, A.S.: Frequency-energy dependence of the bistable nonlinear energy sink. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 8: 29th Conference on Mechanical Vibration and Noise, p. V008T12A022. ASME, Cleveland, OH (2017). https://doi.org/10.1115/DETC2017-67780

  34. Qiu, D., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92, 443–461 (2018). https://doi.org/10.1007/s11071-018-4067-7

    Article  Google Scholar 

  35. Dekemele, K., Van Torre, P., Loccufier, M.: Performance and tuning of a chaotic bi-stable NES to mitigate transient vibrations. Nonlinear Dyn. 98, 1831–1851 (2019). https://doi.org/10.1007/s11071-019-05291-0

    Article  Google Scholar 

  36. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  37. Fourotan, K., Jalali, A., Ahmadi, H.: Investigations of energy absorption using tuned bistable nonlinear energy sink with local and global potentials. J. Sound Vib. 447, 155–169 (2019). https://doi.org/10.1016/j.jsv.2019.01.030

    Article  Google Scholar 

  38. Fang, X., Wen, J.H., Yin, J.F., Yu, D.L.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87, 2677–2695 (2017). https://doi.org/10.1007/s11071-016-3220-4

    Article  Google Scholar 

  39. Yao, H., Wang, Y., Xie, L., Wen, B.: Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech. Syst. Signal Process. 138, 106546 (2020). https://doi.org/10.1016/j.ymssp.2019.106546

    Article  Google Scholar 

  40. Yao, H., Wang, Y., Cao, Y., Wen, B.: Multi-stable nonlinear energy sink for rotor system. Int. J. Non-Linear Mech. 118, 103273 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103273

    Article  Google Scholar 

  41. Yang, T.Z., Liu, T., Tang, Y., Hou, S., Lv, X.F.: Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 97, 1937–1944 (2019). https://doi.org/10.1007/s11071-018-4581-7

    Article  Google Scholar 

  42. Zhao, J., Ming, L., Wang, H., Kacem, N., Huang, Y., Liu, P.: Piezoelectric actuated nonlinear energy sink with tunable attenuation efficiency. J. Appl. Mech. 87(2), 021003 (2020). https://doi.org/10.1115/1.4045108

    Article  Google Scholar 

  43. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A.: Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48(3), 285–318 (2007). https://doi.org/10.1007/s11071-006-9089-x

    Article  MathSciNet  MATH  Google Scholar 

  44. Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M., Kowtko, J.J., Bergman, L.A.: Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1: 1 resonance manifold and transient bridging orbits. Nonlinear Dyn. 42(3), 283–303 (2005). https://doi.org/10.1007/s11071-005-4475-3

    Article  MathSciNet  MATH  Google Scholar 

  45. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47(1–3), 285–309 (2007). https://doi.org/10.1007/s11071-006-9073-5

    Article  MathSciNet  MATH  Google Scholar 

  46. Kerschen, G., Peeters, M., Golinval, J.C.: Nonlinear normal modes, Part I: A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). https://doi.org/10.1016/j.ymssp.2008.04.002

    Article  Google Scholar 

  47. Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016). https://doi.org/10.1016/j.jsv.2015.09.033

    Article  Google Scholar 

  48. Haris, A., Alevras, P., Mohammadpour, M., Theodossiades, S., O’Mahony, M.: Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems. Nonlinear Dyn. 100, 33–49 (2020). https://doi.org/10.1007/s11071-020-05502-z

    Article  Google Scholar 

  49. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Physica D 238(18), 1868–1896 (2009). https://doi.org/10.1016/j.physd.2009.06.013

    Article  MATH  Google Scholar 

  50. Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A., Kerschen, G.: Targeted energy transfers in vibro-impact oscillators for seismic mitigation. Nonlinear Dyn. 50(3), 651–677 (2007). https://doi.org/10.1007/s11071-006-9189-7

    Article  MATH  Google Scholar 

  51. Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87(4), 2415–2433 (2017). https://doi.org/10.1007/s11071-016-3200-8

    Article  Google Scholar 

  52. Tao, H., Gibert, J.: Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals. Nonlinear Dyn. 95(4), 2963–2993 (2019). https://doi.org/10.1007/s11071-018-04734-4

    Article  MATH  Google Scholar 

  53. Singh, A., Moore, K.J.: Characteristic nonlinear system identification of local attachments with clearance nonlinearities. Nonlinear Dyn. 102(3), 1667–1684 (2020). https://doi.org/10.1007/s11071-020-06004-8

    Article  Google Scholar 

  54. Al-Shudeifat, M.A.: Analytical formulas for the energy, velocity and displacement decays of purely nonlinear damped oscillators. J. Vib. Control 21(6), 1210–1219 (2015). https://doi.org/10.1177/1077546313493817

    Article  MathSciNet  Google Scholar 

  55. Al-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. 137(3), 031012 (2015). https://doi.org/10.1115/1.4029288

    Article  Google Scholar 

  56. AL-Shudeifat, M.A.: Time-varying stiffness method for extracting the frequency–energy dependence in the nonlinear dynamical systems. Nonlinear Dyn. 89(2), 1463–1474 (2017). https://doi.org/10.1007/s11071-017-3528-8

    Article  Google Scholar 

  57. Al-Shudeifat, M.A.: Modal damping variations in nonlinear dynamical systems. Nonlinear Dyn. 93(4), 2565–2578 (2018). https://doi.org/10.1007/s11071-018-4342-7

    Article  MathSciNet  Google Scholar 

  58. Manevitch, L.I.: Complex representation of dynamics of coupled nonlinear oscillators. In: Uvarova, L.A., Arinstein, A.E., Latyshev, A.V. (eds.) Mathematical models of non-linear excitations, transfer, dynamics, and control in condensed systems and other media. Springer, Boston (1999). https://doi.org/10.1007/978-1-4615-4799-0_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. AL-Shudeifat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability statement

No datasets are associated with this manuscript. The datasets used for generating the plots and results during the current study can be directly obtained from the numerical simulation of the related mathematical equations in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we discuss the application of the CX-A method to determine the subharmonic periodic motions where the LO vibrates three times faster than the NES, i.e., branches S13 ± . Therefore, two fast frequencies, ω and 3ω, are necessary for accurately modeling the periodic orbits [1]. Accordingly, considering the Hamiltonian version of the system in Eq. (4) in which \({\overline{\lambda }}_{p}=\overline{\lambda }=0\) and \({\omega }_{0}^{2}=1\),, the complexification of the dynamics is firstly performed by introducing four new complex variables

$$ \begin{gathered} \psi_{1} = \dot{x}_{11} + j\omega x_{11} \hfill \\ \psi_{2} = \dot{x}_{21} + j\omega x_{21} \hfill \\ \psi_{3} = \dot{x}_{12} + 3j\omega x_{21} \hfill \\ \psi_{4} = \dot{x}_{22} + 3j\omega x_{22} \hfill \\ \end{gathered} $$
(13)

where \(\omega \) is the dominant fast frequency of oscillation. Following the same approach to derive the backbone branches S11 ± , we can express the complex variables defined in (5) in terms of fast oscillations of frequencies, \({\mathrm{e}}^{j\omega t}\) and \({\mathrm{e}}^{3j\omega t}\), modulated by slowly varying complex amplitudes \({\phi }_{i}\left(t\right)\), \(i=\mathrm{1,2},\mathrm{3,4}:\)

$$ \begin{gathered} \psi_{1,2} \left( t \right) = \phi_{1,2} \left( t \right){\text{e}}^{j\omega t} \hfill \\ \psi_{3,4} \left( t \right) = \phi_{3,4} \left( t \right){\text{e}}^{3j\omega t} \hfill \\ \end{gathered} $$
(14)

By substituting Eqs. (6) and (5) into Eq. (4) and averaging of Eq. (7) with respect to the fast frequencies ω and 3ω, a set of polar representations are introduced as

$$ \begin{gathered} \phi_{1} = A{\text{e}}^{j\alpha } \hfill \\ \phi_{2} = B{\text{e}}^{j\beta } \hfill \\ \phi_{3} = D{\text{e}}^{j\gamma } \hfill \\ \phi_{4} = G{\text{e}}^{j\delta } \hfill \\ \end{gathered} $$
(15)

where \(A,B,D\) and \(G\) are real amplitudes, and \(\alpha , \beta , \gamma \) and \(\delta \) are real phases. Following the same approach to derive the backbone branches S11 ± , the real and imaginary parts of the resulting equations can be separately set to zero and stationary conditions can be imposed on the modulation equations. Considering the trivial solution by assuming identity of phases (\(\alpha =\beta =\gamma =\delta \)), the resulting equations are solved for \(A,B,D\) and \(G\) for each value of\(\omega \). Hence, given that where \({X}_{1}=\frac{A}{\omega }+\frac{D}{3\omega }\) and \({X}_{2}=\frac{B}{\omega }+\frac{G}{3\omega }\), the S13 ± backbone branches can be plotted (Table 2).

The following table provides the initial conditions that have been used for generating the NNMs in Figs. 7, 9 and 11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Shudeifat, M.A., Saeed, A.S. Frequency–energy plot and targeted energy transfer analysis of coupled bistable nonlinear energy sink with linear oscillator. Nonlinear Dyn 105, 2877–2898 (2021). https://doi.org/10.1007/s11071-021-06802-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06802-8

Keywords

Navigation