Skip to main content
Log in

Characteristic nonlinear system identification of local attachments with clearance nonlinearities

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This research considers the identification of mathematical models for the dynamics of local nonlinear attachments with clearance nonlinearities directly from measured transient-response data. Specifically, a recently developed method, designated as the characteristic nonlinear system identification (CNSI) method, is implemented to identify the dynamics of local nonlinear attachments with clearance nonlinearities. The first major advantage of the CNSI procedure is that it provides the means to correlate the equation of motion governing the attachment directly to the instantaneous frequency and damping observed experimentally. The second major advantage is that it identifies the dynamics of the attachment entirely from mass measurements and the measured transient response of the attachment and its installation points. The first phase of the CNSI approach focuses on extracting the characteristic displacement, characteristic velocity, instantaneous frequency, and instantaneous damping from the measured response. The second phase begins with the analyst proposing a model for the dynamics based on the instantaneous frequency and damping curves, and the unknown parameters of the model are then systematically identified through a curve-fitting procedure. The CNSI method is demonstrated experimentally using the response of a linear model airplane wing with a local nonlinear attachment equipped with a clearance nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Friswell, M.I., Mottershead, J.E.: Finite Element Model Updating in Structural Dynamics. Springer, Dordrecht (1995)

    Book  Google Scholar 

  2. Silva, J.M.M.: Modal Analysis and Testing. Springer, Dordrecht (1999)

    Book  Google Scholar 

  3. Ewins, D.J.: Modal Testing: Theory, Practice, and Application. Research Studies Press, Taunton (2000)

    Google Scholar 

  4. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.: Normal Modes and Localization of Nonlinear Systems. Wiley, New York (1996)

    Book  Google Scholar 

  5. Brandon, J.A.: Some insights into the dynamics of defective structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 212, 441–454 (1998). https://doi.org/10.1243/0954406981521358

    Article  Google Scholar 

  6. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I. Springer, Berlin (2008). https://doi.org/10.1007/978-1-4020-9130-8

    Book  MATH  Google Scholar 

  7. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2006). https://doi.org/10.1016/j.ymssp.2005.04.008

    Article  Google Scholar 

  8. Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017). https://doi.org/10.1016/j.ymssp.2016.07.020

    Article  Google Scholar 

  9. Kosambi, D.D.: Statistics in function space. J. Indian Math. Soc. 7, 76–88 (1943)

    MathSciNet  MATH  Google Scholar 

  10. Karhunen, K.: On Linear Methods in Probability and Statistics. Dissertation, University of Helsinki (1947).

  11. Lévy, P., Loève, M.: Processus stochastiques et mouvement brownien. Gauthier-Villars, Paris (1948)

    Google Scholar 

  12. Pugachev, V.: General theory of the correlations of random functions. Izv. Akad. Nauk USSR 17, 1401–1402 (1953)

    MathSciNet  Google Scholar 

  13. Obukhov, A.M.: Statistical description of continuous fields. Tr. Geophys. Int. Akad. Nauk SSSR. 24, 3–42 (1954)

    MathSciNet  Google Scholar 

  14. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, coherent structures, dynamical systems, and symmetry. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  15. Feeny, B.F., Kappagantu, R.: On the physical interpretation of proper orthogonal modes in vibrations. J. Sound Vib. 211, 607–616 (1998). https://doi.org/10.1006/jsvi.1997.1386

    Article  Google Scholar 

  16. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78, 808–817 (2000)

    Google Scholar 

  17. Kerschen, G., Golinval, J.-C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41, 147–169 (2005). https://doi.org/10.1007/s11071-005-2803-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, Y.S., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: A global–local approach to nonlinear system identification: a review. Struct. Control Health Monit. 17, 742–760 (2010). https://doi.org/10.1002/stc.414

    Article  Google Scholar 

  19. Lee, Y.S., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: A time-domain nonlinear system identification method based on multiscale dynamic partitions. Meccanica 46, 625–649 (2011). https://doi.org/10.1007/s11012-010-9327-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Vakakis, A.F., Bergman, L.A., McFarland, D.M., Lee, Y.S., Kurt, M.: Current efforts towards a non-linear system identification methodology of broad applicability. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 2497–2515 (2011). https://doi.org/10.1177/0954406211417217

    Article  Google Scholar 

  21. Chen, H., Kurt, M., Lee, Y.S., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental system identification of the dynamics of a vibro-impact beam with a view towards structural health monitoring and damage detection. Mech. Syst. Signal Process. 46, 91–113 (2014). https://doi.org/10.1016/j.ymssp.2013.12.014

    Article  Google Scholar 

  22. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Strongly nonlinear beats in the dynamics of an elastic system with a strong local stiffness nonlinearity: Analysis and identification. J. Sound Vib. 333, 2054–2072 (2014a). https://doi.org/10.1016/j.jsv.2013.11.021

    Article  Google Scholar 

  23. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Frequency–energy plots of steady-state solutions for forced and damped systems, and vibration isolation by nonlinear mode localization. Commun. Nonlinear Sci. Numer. Simul. 19, 2905–2917 (2014b). https://doi.org/10.1016/j.cnsns.2013.12.018

    Article  MathSciNet  MATH  Google Scholar 

  24. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Methodology for model updating of mechanical components with local nonlinearities. J. Sound Vib. 357, 331–348 (2015). https://doi.org/10.1016/j.jsv.2015.07.012

    Article  Google Scholar 

  25. Kurt, M., Moore, K.J., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Nonlinear model updating applied to the IMAC XXXII Round Robin benchmark system. Mech. Syst. Signal Process. 88, 111–122 (2017). https://doi.org/10.1016/j.ymssp.2016.10.016

    Article  Google Scholar 

  26. Lee, Y.S., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Physics-based foundation for empirical mode decomposition. AIAA J. 47, 2938–2963 (2009). https://doi.org/10.2514/1.43207

    Article  Google Scholar 

  27. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  28. Moore, K.J., Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Wavelet-bounded empirical mode decomposition for measured time series analysis. Mech. Syst. Signal Process. 99, 14–29 (2018a)

    Article  Google Scholar 

  29. Moore, K.J., Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Wavelet-bounded empirical mode decomposition for vibro-impact analysis. Nonlinear Dyn. 93, 1559–1577 (2018b). https://doi.org/10.1007/s11071-018-4276-0

    Article  Google Scholar 

  30. Herrera, C.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity. J. Sound Vib. 388, 298–314 (2017)

    Article  Google Scholar 

  31. Moore, K.J.: Data-Driven System Identification of Strongly Nonlinear Modal Interactions and Model Updating of Nonlinear Dynamical Systems. Ph.D. Dissertation, Department of Mechanical Science and Engineering (2018). https://hdl.handle.net/2142/102385.

  32. Moore, K.J., Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Direct detection of nonlinear modal interactions from time series measurements. Mech. Syst. Signal Process. 125, 311–329 (2019a). https://doi.org/10.1016/j.ymssp.2017.09.010

    Article  Google Scholar 

  33. Moore, K.J., Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Time-series based nonlinear system identification of modal interactions caused by strongly nonlinear attachments. J. Sound Vib. 438, 13–32 (2019b). https://doi.org/10.1016/j.jsv.2018.09.033

    Article  Google Scholar 

  34. Moore, K.J.: Characteristic nonlinear system identification: A data-driven approach for local nonlinear attachments. Mech. Syst. Signal Process. 131, 335–347 (2019). https://doi.org/10.1016/j.ymssp.2019.05.066

    Article  Google Scholar 

  35. Manevitch, L.I., Sigalov, G., Romeo, F., Bergman, L.A., Vakakis, A.: Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study. J. Appl. Mech. 81, 041011–041011–041019 (2013). https://doi.org/10.1115/1.4025150

    Article  Google Scholar 

  36. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017)

    Article  Google Scholar 

  37. AL-Shudeifat, M.A., Saeed, A.S.: Frequency-energy dependence of the bistable nonlinear energy sink. In: ASME International Design Engineering Technical Conferences and Computers, Information in Engineering Conference, Vol. 8, 29th Conference on Mechanical Vibration and Noise, ASME, Cleveland, OH, 2017, p. V008T12A022. https://doi.org/10.1115/DETC2017-67780.

  38. Mojahed, A., Moore, K.J., Bergman, L.A., Vakakis, A.F.: Strong geometric softening–hardening nonlinearities in an oscillator composed of linear stiffness and damping elements. Int. J. Non-Linear Mech. (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.09.004

    Article  Google Scholar 

  39. Mace, T., Taylor, J., Schwingshackl, C.W.: A novel technique to extract the modal damping properties of a thin blade. In: Mains, M.L., Dilworth, B.J. (eds.) Topics in Modal Analysis and Testing, pp. 247–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12684-1_25

    Chapter  Google Scholar 

  40. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960). https://doi.org/10.1115/1.3662552

    Article  MathSciNet  Google Scholar 

  41. Moreu, F., Spencer, B.F.: Framework for Consequence-based Management and Safety of Railroad Bridge Infrastructure Using Wireless Smart Sensors (WSS), Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign (2015).

  42. Addison, P.S.: The Illustrated Wavelet Transform Handbook Introductory Theory and Applications in Science, Engineering, Medicine and Finance. Taylor & Francis, New York (2002)

    Book  Google Scholar 

  43. Feldman, M.: Hilbert Transform Applications in Mechanical Vibration. Wiley, Hoboken (2011). https://doi.org/10.1002/9781119991656

    Book  Google Scholar 

  44. Vakakis, A.F.: Passive nonlinear targeted energy transfer. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 376, 20170132 (2018). https://doi.org/10.1098/rsta.2017.0132

    Article  MathSciNet  MATH  Google Scholar 

  45. Whitican, S.M., Copeland, T.J.: Structural testbed design and testing with controlled nonlinearities. Sound Vib. 50, 6–10 (2016)

    Google Scholar 

  46. Moore, K.J., Mojahed, A., Bergman, L.A., Vakakis, A.F.: Local nonlinear stores induce global effects in the dynamics of an experimental model airplane. AIAA J. 57, 4953–4965 (2019). https://doi.org/10.2514/1.J058311

    Article  Google Scholar 

  47. Sutton, M.A., Orteu, J.J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, New York (2009). https://doi.org/10.1007/978-0-387-78747-3

    Book  Google Scholar 

  48. Kim, S.B., Spencer, B.F., Yun, C.-B.: Frequency domain identification of multi-input, multi-output systems considering physical relationships between measured variables. J. Eng. Mech. 131, 461–472 (2005). https://doi.org/10.1061/(ASCE)0733-9399(2005)131:5(461)

    Article  Google Scholar 

  49. Bampton, M.C.C., Craig, R.R., Jr.: Coupling of substructures for dynamic analyses. AIAA J. 6, 1313–1319 (1968). https://doi.org/10.2514/3.4741

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Alireza Mojahed for his stimulating conversations regarding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keegan J. Moore.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest or competing interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Moore, K.J. Characteristic nonlinear system identification of local attachments with clearance nonlinearities. Nonlinear Dyn 102, 1667–1684 (2020). https://doi.org/10.1007/s11071-020-06004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06004-8

Keywords

Navigation