Skip to main content

Advertisement

Log in

Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear energy sink and a negative stiffness element are integrated for achieving enhanced, passive, and adaptive vibration suppression for a pipe conveying fluid. The enhanced NES simultaneously processes a negative linear and a cubic nonlinearity, which is implemented by two linear springs with a special configuration with preloaded deformation. The governing equation of the NES–pipe system is derived and simulated for examining the isolation effectiveness. The performance of the enhanced and classical NESs is compared. It is found that the enhanced NES can absorb vibration energy with a faster decay rate, achieving simultaneous small threshold, high energy dissipation efficiency, and higher robustness. By performing optimal design, a maximum efficiency \(\sim \,98.19\%\) is realized, which is much higher than previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paidoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33, 267–294 (1974)

    Article  Google Scholar 

  2. Yang, T.Z., Ji, S.D., Yang, X.D., Fang, B.: Microfluid-induced nonlinear free vibration of microtubes. Int. J. Eng. Sci. 76, 47–55 (2014)

    Article  MATH  Google Scholar 

  3. Tang, Y., Yang, T.Z.: Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos. Struct. 185, 393–400 (2018)

    Article  Google Scholar 

  4. Guo, C., Zhang, C., Paidoussis, M.: Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles. J. Fluids Struct. 26, 793–803 (2010)

    Article  Google Scholar 

  5. Dai, H.L., Wu, P., Wang, L.: Nonlinear dynamic responses of electrostatically actuated microcantilevers containing internal fluid flow. Microfluid. Nanofluid. 21, 162 (2017)

    Article  Google Scholar 

  6. Dai, H.L., Wang, L., Ni, Q.: Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid. Nanofluid. 18, 49–55 (2015)

    Article  Google Scholar 

  7. Dai, H.L., Wang, Y.K., Wang, L.: Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int. J. Eng. Sci. 94, 103–122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, L., Hong, Y.Z., Dai, H.L., Ni, Q.: Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field. Acta Mech. Solida Sin. 29, 567–576 (2016)

    Article  Google Scholar 

  9. Lu, P., Lee, H.: A treatment for the study of dynamic instabilities of fluid-conveying pipes. Mech. Res. Commun. 36, 742–746 (2009)

    Article  MATH  Google Scholar 

  10. Liang, F., Yang, X.D., Zhang, W., Qian, Y.J.: Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. J. Sound Vib. 417, 65–79 (2018)

    Article  Google Scholar 

  11. Georgiades, F., Vakakis, A.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12, 643–651 (2007)

    Article  MATH  Google Scholar 

  12. Georgiades, F., Vakakis, A.F.: Passive targeted energy transfers and strong modal interactions in the dynamics of a thin plate with strongly nonlinear attachments. Int. J. Solids Struct. 46, 2330–2353 (2009)

    Article  MATH  Google Scholar 

  13. Panagopoulos, P., Georgiades, F., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A.: Multi-scaled analysis of the damped dynamics of an elastic rod with an essentially nonlinear end attachment. Int. J. Solids Struct. 44, 6256–6278 (2007)

    Article  MATH  Google Scholar 

  14. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Nolinear Dyn. 50, 781–794 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Chen, J., Zhang, W., Yao, M.H.: Vibration reduction in truss core sandwich plate with internal nonlinear energy sink. Compos. Struct. 193, 180–188 (2018)

    Article  Google Scholar 

  16. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple scale/harmonic balance algorithm. Nonlinear Dyn. 70, 2049–2061 (2012)

    Article  MathSciNet  Google Scholar 

  17. Yan, Z., Ragab, S.A., Hajj, M.R.: Passive control of transonic flutter with a nonlinear energy sink. Nonlinear Dyn. 91(1), 577–590 (2018)

    Article  Google Scholar 

  18. Blanchard, A., Bergman, L., Vakakis, A.F.: Targeted energy transfer in laminar vortex-induced vibration of a sprung cylinder with a nonlinear dissipative rotator. Phys. D Nonlinear Phenom. 350, 26–44 (2017)

    Article  MathSciNet  Google Scholar 

  19. Zhang, Y.W., Zhang, Z., Chen, L.Q., Yang, T.Z., Fang, B., Zang, J.: Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dyn. 82(1–2), 61–71 (2015)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Y.W., Yuan, B., Fang, B., Chen, L.Q.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87, 1159–1167 (2017)

    Article  Google Scholar 

  21. Yang, K., Zhang, Y.W., Ding, H., Yang, T.Z., Li, Y., Chen, L.Q.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. 139(2), 021011 (2017)

    Article  Google Scholar 

  22. Yang, T.Z., Yang, X.D., Li, Y., Fang, B.: Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. J. Vib. Control 20(9), 1293–1300 (2014)

    Article  MathSciNet  Google Scholar 

  23. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. 45, 693–711 (2007)

    Article  Google Scholar 

  24. Lee, Y.S., Kerschen, G., McFarland, D.M., JOEL HILL, W., Nichkawde, C., Strganac, T.W., Bergman, L.A., Vakakis, A.F.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments. AIAA J. 45, 2391–2400 (2007)

  25. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Comments on energy harvesting on a 2: 1 internal resonance portal frame support structure using a nonlinear energy sink as a passive controller. Int. Rev. Mech. Eng. (IREME) 10(3), 147–156 (2016)

    Article  Google Scholar 

  26. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V.: Using passive control by a pendulum in a portal frame platform with piezoelectric energy harvesting. J. Vib. Control 24, 3684 (2017). https://doi.org/10.1177/1077546317709387

    Article  MathSciNet  Google Scholar 

  27. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R., de Pontes, B.R., Felix, J.L., Bueno, A.M.: Application of passive control to energy harvester efficiency using a non-ideal portal frame structural support system. J. Intell. Mater. Syst. Struct. 25(4), 417–429 (2014)

    Article  Google Scholar 

  28. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., de Pontes, B.R., Felix, J.L.P., Bueno, Á.M.: A non-ideal portal frame energy harvester controlled using a pendulum. Eur. Phys. J. Spec. Top. 222(7), 1575–1586 (2013)

    Article  Google Scholar 

  29. Zang, J., Zhang, Y.W., Ding, H., Yang, T., Chen, L.Q.: The evaluation of a nonlinear energy sin absorber based on the transmissibility. Mech. Syst. Signal Process. (2018). https://doi.org/10.1016/j.ymssp.2018.05.061

  30. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 1–8, 330 (2011)

    Google Scholar 

  31. Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn 91, 733 (2018)

    Article  Google Scholar 

  32. Wei, Y.M., Peng, Z.K., Dong, X.J., Zhang, W.M., Meng, G.: Mechanism of optimal targeted energy transfer. J. Appl. Mech. 84(1), 011007 (2016)

    Article  Google Scholar 

  33. AL-Shudeifat, M.A.: Asymmetric magnet-based nonlinear energy sink. J. Comput. Nonlinear Dyn. 10(1), 014502 (2014)

  34. AL-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905 (2014)

  35. Yang, X.D., Wu, H., Qian, Y.J., Zhang, W., Lim, C.W.: Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling. J. Sound Vib. 393, 308–320 (2017)

    Article  Google Scholar 

  36. Ding, H., Chen, L.Q.: Galerkin methods for natural frequencies of high-speed axially moving beams. J. Sound Vib. 329, 3484–3494 (2010)

    Article  Google Scholar 

  37. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  38. Moore, K.J., Bunyan, J., Tawfick, S., Gendelman, O.V., Li, S., Leamy, M., Vakakis, A.F.: Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy. Phys. Rev. E 97(1), 012219 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of National Science Foundation of China (Nos. 11672187 and 11572182), the Natural Science Research Project of Institutions of Higher Education in Anhui Province (No. KJ2017A114), and Natural Science Foundation of Liaoning Province (201602573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Liu, T., Tang, Y. et al. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn 97, 1937–1944 (2019). https://doi.org/10.1007/s11071-018-4581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4581-7

Keywords

Navigation