Skip to main content

Advertisement

Log in

Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 04 August 2021

This article has been updated

Abstract

Nonlinear energy sink (NES) refers to a typical passive vibration device connected to linear or weakly nonlinear structures for vibration absorption and mitigation. This study investigates the dynamics of 1-dof and 2-dof NES with nonlinear damping and combined stiffness connected to a linear oscillator. For the system of 1-dof NES, a truncation damping and failure frequency are revealed through bifurcation analysis using the complex variable averaging method. The frequency detuning interval for the existence of the strongly modulated response (SMR) is also reported. For the system of 2-dof NES, it is reported in a similar bifurcation analysis that the mass distribution between NES affects the maximum value of saddle-node bifurcation. To obtain the periodic solution of the 2-dof NES system with the consideration of frequency detuning, the incremental harmonic balance method (IHB) and Floquet theory are employed. The corresponding response regime is obtained by Poincare mapping, it shows that the responses of the linear oscillator and 2-dof NES are not always consistent, and 2-dof NES can generate extra SMR than 1-dof NES. Finally, the vibration suppression effect of the proposed NES with nonlinear damping, and combined stiffness is analyzed and verified by the energy spectrum, and it also shows that the 2-dof NES system demonstrates better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability statements

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Change history

Abbreviations

\(c_1\) :

Viscous damping of the linear oscillator.

\(c_2, c_3\) :

Nonlinear damping of 1-dof NES and 2-dof NES.

F :

External harmonic force.

\(k_1 \) :

Linear stiffness of the linear oscillator.

\(k_{nl},k_{n2}\) :

Combined nonlinear stiffness of 1-dof NES and 2-dof NES.

\(m_1,m_2,m_3\) :

Mass of linear oscillator, 1-dof NES and 2-dof NES.

\(x_1,x_2,x_3\) :

Displacement of the linear oscillator, 1-dof NES and 2-dof NES.

\(\eta \) :

Mass distribution in 2-dof NES.

References

  1. Xu, L., Cui, Y., Wang, Z.: Active tuned mass damper based vibration control for seismic excited adjacent buildings under actuator saturation. Soil Dyn. Earthq. Eng. 135, 106181 (2020). https://doi.org/10.1016/j.soildyn.2020.106181

    Article  Google Scholar 

  2. Sun, T., Nielsen, S.R.K.: Semi-Active Feedforward Control of a Floating OWC Point Absorber for Optimal Power Take-Off. IEEE Trans. Sustain. Energy. 11, 2923279 (2020). https://doi.org/10.1109/TSTE.2019.2923279

    Article  Google Scholar 

  3. Tehrani, G.G., Dardel, M., Pashaei, M.H.: Passive vibration absorbers for vibration reduction in the multi-bladed rotor with rotor and stator contact. Acta Mech. 231, 597 (2020). https://doi.org/10.1007/s00707-019-02557-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Fisco, N.R., Adeli, H.: Smart structures: Part II—Hybrid control systems and control strategies (2011)

  5. Hermann, F.: Device for damping vibrations of bodies (1909)

  6. Fang, H., Liu, L., Zhang, D., Wen, M.: Tuned mass damper on a damped structure. Struct. Control Heal. Monit. 26 (2019). https://doi.org/10.1002/stc.2324

  7. Elias, S., Rupakhety, R., Ólafsson, S.: Tuned Mass Dampers for Response Reduction of a Reinforced Concrete Chimney Under Near-Fault Pulse-Like Ground Motions. Front. Built Environ. 6 (2020). https://doi.org/10.3389/fbuil.2020.00092

  8. Roberson, R.E.: Synthesis of a nonlinear dynamic vibration absorber. J. Franklin Inst. 254, 205 (1952). https://doi.org/10.1016/0016-0032(52)90457-2

    Article  MathSciNet  Google Scholar 

  9. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear targeted energy transfer in mechanical and structural systems I. Solid Mech. Appl. 156 (2008)

  10. Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 3061 (2020). https://doi.org/10.1007/s11071-020-05606-6

    Article  Google Scholar 

  11. Farid Golnaraghi, M.: Vibration suppression of flexible structures using internal resonance. Mech. Res. Commun. 18, 135 (1991). https://doi.org/10.1016/0093-6413(91)90042-U

    Article  MATH  Google Scholar 

  12. Jiang, X., Michael Mcfarland, D., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33, 87 (2003). https://doi.org/10.1023/A:1025599211712

    Article  MATH  Google Scholar 

  13. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks (2020)

  14. Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91, 733 (2018). https://doi.org/10.1007/s11071-017-3906-2

    Article  Google Scholar 

  15. AL-Shudeifat, M.A.: Nonlinear Energy Sinks With Piecewise-Linear Nonlinearities. J. Comput. Nonlinear Dyn. 14 (2019). https://doi.org/10.1115/1.4045052

  16. Li, H., Li, A., Kong, X.: Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates. Nonlinear Dyn. 103, 1475 (2021). https://doi.org/10.1007/s11071-020-06178-1

    Article  Google Scholar 

  17. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99, 593 (2020). https://doi.org/10.1007/s11071-019-04775-3

    Article  MATH  Google Scholar 

  18. Moslemi, A., Khadem, S.E., Khazaee, M., Davarpanah, A.: Nonlinear vibration and dynamic stability analysis of an axially moving beam with a nonlinear energy sink. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06389-0

  19. Wierschem, N.E., Spencer, B.F.J.: Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures, Dissertations and Theses-Gradworks (2014)

  20. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86, 2161 (2016). https://doi.org/10.1007/s11071-016-2922-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C., Moore, K.J.: On nonlinear energy flows in nonlinearly coupled oscillators with equal mass. Nonlinear Dyn. 103, 443 (2021). https://doi.org/10.1007/s11071-020-06120-5

    Article  Google Scholar 

  22. Wang, G.X., Ding, H., Chen, L.Q.: Nonlinear normal modes and optimization of a square root nonlinear energy sink. Nonlinear Dyn. 100, 3061 (2021). https://doi.org/10.1007/s11071-021-06334-1

    Article  Google Scholar 

  23. Geng, X.F., Ding, H., Mao, X.Y., Chen, L.Q.: Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal Process. 156, 107625 (2021). https://doi.org/10.1016/j.ymssp.2021.107625

    Article  Google Scholar 

  24. Gendelman, O.V., Gourdon, E., Lamarque, C.H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294, 651 (2006). https://doi.org/10.1016/j.jsv.2005.11.031

    Article  Google Scholar 

  25. Gendelman, O.V., Starosvetsky, Y.: Quasi-periodic response regimes of linear oscillator coupled to nonlinear energy sink under periodic forcing. J. Appl. Mech. Trans. ASME. 74 (2007). https://doi.org/10.1115/1.2198546

  26. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: Description of response regimes. Nonlinear Dyn. 51, 31 (2008). https://doi.org/10.1007/s11071-006-9167-0

    Article  MATH  Google Scholar 

  27. Xiong, H., Kong, X., Yang, Z., Liu, Y.: Response regimes of narrow-band stochastic excited linear oscillator coupled to nonlinear energy sink (2015)

  28. Farid, M., Gendelman, O.V.: Response regimes in equivalent mechanical model of strongly nonlinear liquid sloshing. Int. J. Non. Linear. Mech. 94, 146 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.04.006

    Article  Google Scholar 

  29. Abdollahi, A., Khadem, S.E., Khazaee, M., Moslemi, A.: On the analysis of a passive vibration absorber for submerged beams under hydrodynamic forces: An optimal design. Eng. Struct. 220, 110986 (2020). https://doi.org/10.1016/j.engstruct.2020.110986

    Article  Google Scholar 

  30. Li, T., Seguy, S., Berlioz, A.: Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation. Nonlinear Dyn. 87, 2415 (2017). https://doi.org/10.1007/s11071-016-3200-8

    Article  Google Scholar 

  31. Wang, J., Wang, B., Zhang, C., Liu, Z.: Effectiveness and robustness of an asymmetric nonlinear energy sink-inerter for dynamic response mitigation. Earthq. Eng. Struct. Dyn. (2021). https://doi.org/10.1002/eqe.3416

  32. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315, 746 (2008). https://doi.org/10.1016/j.jsv.2007.12.023

    Article  Google Scholar 

  33. Xiong, H., Kong, X., Li, H., Yang, Z.: Vibration analysis of nonlinear systems with the bilinear hysteretic oscillator by using incremental harmonic balance method. Commun. Nonlinear Sci. Numer. Simul. 42, 1–708 (2017). https://doi.org/10.1016/j.cnsns.2016.06.005

    Article  MathSciNet  MATH  Google Scholar 

  34. Kovacic, I., Gatti, G.: Some benefits of using exact solutions of forced nonlinear oscillators: Theoretical and experimental investigations. J. Sound Vib. 436, 310 (2018). https://doi.org/10.1016/j.jsv.2018.06.059

    Article  Google Scholar 

  35. Dou, C., Fan, J., Li, C., Cao, J., Gao, M.: On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints. Mech. Mach. Theory. 147, 103750 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103750

    Article  Google Scholar 

  36. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping. J. Sound Vib. 324, 916 (2009). https://doi.org/10.1016/j.jsv.2009.02.052

    Article  Google Scholar 

  37. Andersen, D., Starosvetsky, Y., Vakakis, A., Bergman, L.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67, 807 (2012). https://doi.org/10.1007/s11071-011-0028-0

    Article  MathSciNet  Google Scholar 

  38. Quinn, D.D., Hubbard, S., Wierschem, N., Al-Shudeifat, M.A., Ott, R.J., Luo, J., Spencer, B.F., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 226 (2012). https://doi.org/10.1177/1464419311432671

  39. Al-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. Trans. ASME. 137, 031012 (2015). https://doi.org/10.1115/1.4029288

    Article  Google Scholar 

  40. Elliott, S.J., Tehrani, M.G., Langley, R.S.: Nonlinear damping and quasi-linear modelling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373 (2015). https://doi.org/10.1098/rsta.2014.04024

  41. Liu, Y., Chen, G., Tan, X.: Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping. Nonlinear Dyn. 101, 2157 (2020). https://doi.org/10.1007/s11071-020-05876-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No.2016YFB0501203) and the National Natural Science Foundation of China (No.51875119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianren Kong.

Ethics declarations

Conflict of interest

We have no competing interests. All authors gave final approval for publication and agree to be accountable for all aspects of the work presented herein.

Human and animal rights

No human or animal subjects were used in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: ”The article has been updated.

Appendix: Derivation of simplified system equations

Appendix: Derivation of simplified system equations

The system equation is expressed as

$$\begin{aligned} \begin{aligned}&{{m}_{1}}{{{\ddot{x}}}_{1}}+{{k}_{1}}{{x}_{1}}+{{c}_{1}}{{{\dot{x}}}_{1}}+{{k}_{21}}({{x}_{1}}-{{x}_{2}}) \\&\quad +{{k}_{23}}{{({{x}_{1}}-{{x}_{2}})}^{3}}+{{c}_{2}}{{({{{\dot{x}}}_{1}}-{{{\dot{x}}}_{2}})}^{3}}={{F}_{0}}\cos (wt) \\&{{m}_{2}}{{{\ddot{x}}}_{2}}+{{k}_{21}}({{x}_{2}}-{{x}_{1}})+{{k}_{23}}{{({{x}_{2}}-{{x}_{1}})}^{3}}\\&\quad +{{c}_{2}}{{({{{\dot{x}}}_{2}}-{{{\dot{x}}}_{1}})}^{3}}=0 \end{aligned} \end{aligned}$$
(A.1)

To transform Eq. (A.1) into a dimensionless form, the following coordinate transformations are introduced

$$\begin{aligned} \bar{t}=\sqrt{\frac{{{k}_{1}}}{{{m}_{1}}}}\text { }t,\text { }{{\bar{x}}_{i}}={{x}_{i}},\text { }\bar{w}=w\sqrt{\frac{{{m}_{1}}}{{{k}_{1}}}} \end{aligned}$$
(A.2)

Letting \(c_1 = 0 \), by defining the following variables

$$\begin{aligned} \begin{aligned}&\frac{{{k}_{21}}}{{{k}_{1}}}=\varepsilon {{k}_{221}},\quad \frac{{{k}_{23}}}{{{k}_{1}}}=\varepsilon {{k}_{223}},\quad \frac{{{c}_{2}}}{{{m}_{1}}}\sqrt{\frac{{{k}_{1}}}{{{m}_{1}}}}=\varepsilon \lambda \\&\frac{{{m}_{2}}}{{{m}_{1}}}=\varepsilon ,\quad \qquad \frac{{{F}_{0}}}{{{k}_{1}}}=\varepsilon A \end{aligned} \end{aligned}$$
(A.3)

and substituting Eqs. (A.2) and (A.3) into Eq. (A.1), we have

$$\begin{aligned} \begin{aligned}&{{{\ddot{x}}}_{1}}+{{x}_{1}}+\varepsilon {{k}_{221}}({{x}_{1}}-{{x}_{2}})+\varepsilon {{k}_{223}}{{({{x}_{1}}-{{x}_{2}})}^{3}} \\&\quad +\varepsilon \lambda {{({{{\dot{x}}}_{1}}-{{{\dot{x}}}_{2}})}^{3}}=\varepsilon A\cos (wt) \\&{{{\ddot{x}}}_{2}}+{{k}_{221}}({{x}_{2}}-{{x}_{1}})+{{k}_{223}}{{({{x}_{2}}-{{x}_{1}})}^{3}}+\lambda {{({{{\dot{x}}}_{2}}-{{{\dot{x}}}_{1}})}^{3}}=0 \\ \end{aligned} \end{aligned}$$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kong, X., Yue, C. et al. Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dyn 105, 167–190 (2021). https://doi.org/10.1007/s11071-021-06615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06615-9

Keywords

Navigation