Skip to main content

Advertisement

Log in

Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the considered two-DOF system consists of a linear oscillator (LO) under external harmonic excitation and an attached lightweight nonlinear energy sink (NES) with local potential and geometrically nonlinear damping. With the application of complex-averaging method, the steady-state dynamical behavior of the system is investigated by the slow invariant manifold, folding singularities and equilibrium points. Different scenarios of strongly modulated responses are presented based on the geometry of SIM, and the numerical simulation results are in consistent with the analytical prediction. The incremental harmonic balance method is applied to detect the frequency response curves of the system around the fundamental resonance, and the accuracy of the theoretical analysis is fully verified by the numerical results obtained by direct integration of equations of motion of the system. It is demonstrated that the increase in external forcing amplitude, global nonlinear stiffness and local nonlinear stiffness can drive the frequency response curves move toward the right and widen the frequency bandwidth of the coexistence of multiple steady-state response regimes, while the increase in nonlinear damping the reverse. The numerical simulation results also show that the addition of geometrically nonlinear damping and local potential in the proposed NES can drastically enhance the capacity of the nonlinear vibration absorber to suppress the shock-induced response of the LO, and the proposed NES is effective for a comparatively broad range of applied impulsive energies, particularly for the high impulsive energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Frahm, H.: Device for damping vibrations of bodies. U.S. Patent 989,958 (1911)

  2. Hartog, J.P.D.: Mechanical Vibrations. Courier Corporation, Chelmsford (1985)

    MATH  Google Scholar 

  3. Brennan, M.J.: Vibration control using a tunable vibration neutralizer. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 211, 91–108 (2016)

    Google Scholar 

  4. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, New York (2008)

    MATH  Google Scholar 

  5. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68, 42–48 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Gourdon, E., Alexander, N.A., Taylor, C.A., Lamarque, C.H., Pernot, S.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300, 522–551 (2007)

    Google Scholar 

  8. Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37, 115–128 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Lamarque, C.-H., Gendelman, O.V., Ture Savadkoohi, A., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221, 175 (2011)

    MATH  Google Scholar 

  10. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315, 732–745 (2008)

    Google Scholar 

  11. Chen, J.E., Sun, M., Hu, W.H., Zhang, J.H., Wei, Z.C.: Performance of non-smooth nonlinear energy sink with descending stiffness. Nonlinear Dyn. 100, 255–267 (2020)

    Google Scholar 

  12. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017)

    Google Scholar 

  13. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. 99, 593–609 (2020)

    MATH  Google Scholar 

  14. Zang, J., Zhang, Y.-W.: Responses and bifurcations of a structure with a lever-type nonlinear energy sink. Nonlinear Dyn. 98, 889–906 (2019)

    Google Scholar 

  15. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018)

    Google Scholar 

  16. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83, 1–22 (2016)

    MathSciNet  Google Scholar 

  17. Zhang, Y.-W., Zhang, Z., Chen, L.-Q., Yang, T.-Z., Fang, B., Zang, J.: Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dyn. 82, 61–71 (2015)

    MathSciNet  Google Scholar 

  18. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech. Mach. Theory 50, 134–149 (2012)

    Google Scholar 

  19. Nucera, F., Lo Iacono, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: experimental results. J. Sound Vib. 313, 57–76 (2008)

    Google Scholar 

  20. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001)

    Google Scholar 

  21. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Phys. Nonlinear Phenom. 237, 1719–1733 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2007)

    MATH  Google Scholar 

  23. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51, 47 (2007)

    MATH  Google Scholar 

  24. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)

    Google Scholar 

  25. Gatti, G., Brennan, M.J., Kovacic, I.: On the interaction of the responses at the resonance frequencies of a nonlinear two degrees-of-freedom system. Phys. Nonlinear Phenom. 239, 591–599 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Gatti, G., Kovacic, I., Brennan, M.J.: On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator. J. Sound Vib. 329, 1823–1835 (2010)

    Google Scholar 

  27. Gatti, G., Brennan, M.J., Tang, B.: Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mech. Syst. Signal Process. 125, 4–20 (2019)

    Google Scholar 

  28. Cho, H., Jeong, B., Yu, M.-F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. Int. J. Solids Struct. 49, 2059–2065 (2012)

    Google Scholar 

  29. Cho, H., Yu, M.-F., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Dynamics of microcantilever integrated with geometric nonlinearity for stable and broadband nonlinear atomic force microscopy. Surf. Sci. 606, L74–L78 (2012)

    Google Scholar 

  30. Andersen, D., Starosvetsky, Y., Vakakis, A., Bergman, L.: Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping. Nonlinear Dyn. 67, 807–827 (2012)

    MathSciNet  Google Scholar 

  31. Andersen, D., Starosvetsky, Y., Mane, M., Hubbard, S., Remick, K., Wang, X., Vakakis, A., Bergman, L.: Non-resonant damped transitions resembling continuous resonance scattering in coupled oscillators with essential nonlinearities. Phys. Nonlinear Phenom. 241, 964–975 (2012)

    MATH  Google Scholar 

  32. AL-Shudeifat, M.A.: Nonlinear energy sinks with nontraditional kinds of nonlinear restoring forces. J. Vib. Acoust. 139, 1–5 (2017)

    Google Scholar 

  33. Sapsis, T.P., Dane Quinn, D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134, 1–12 (2012)

    Google Scholar 

  34. Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91, 733–754 (2018)

    Google Scholar 

  35. Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dyn. 96, 1819–1845 (2019)

    MATH  Google Scholar 

  36. Mojahed, A., Moore, K., Bergman, L.A., Vakakis, A.F.: Strong geometric softening–hardening nonlinearities in an oscillator composed of linear stiffness and damping elements. Int. J. Non-linear Mech. 107, 94–111 (2018)

    Google Scholar 

  37. Hill, T.L., Cammarano, A., Neild, S.A., Wagg, D.J.: Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves. J. Sound Vib. 349, 276–288 (2015)

    Google Scholar 

  38. Charlemagne, S., Lamarque, C.-H., Ture Savadkoohi, A.: Dynamics and energy exchanges between a linear oscillator and a nonlinear absorber with local and global potentials. J. Sound Vib. 376, 33–47 (2016)

    Google Scholar 

  39. Charlemagne, S., Ture Savadkoohi, A., Lamarque, C.-H.: Interactions between two coupled nonlinear forced systems: fast/slow dynamics. Int. J. Bifurc. Chaos 26, 1650155 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Foroutan, K., Jalali, A., Ahmadi, H.: Investigations of energy absorption using tuned bistable nonlinear energy sink with local and global potentials. J. Sound Vib. 447, 155–169 (2019)

    Google Scholar 

  41. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Ture Savadkoohi, A., Lamarque, C.-H., Weiss, M., Vaurigaud, B., Charlemagne, S.: Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies. Nonlinear Dyn. 86, 2145–2159 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, vol. 720. Wiley, New York (1979)

    MATH  Google Scholar 

  44. Charlemagne, S., Lamarque, C.-H., Ture Savadkoohi, A.: Vibratory control of a linear system by addition of a chain of nonlinear oscillators. Acta Mech. 228, 3111–3133 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140, 273–286 (1990)

    Google Scholar 

  46. Xiong, H., Kong, X., Li, H., Yang, Z.: Vibration analysis of nonlinear systems with the bilinear hysteretic oscillator by using incremental harmonic balance method. Commun. Nonlinear Sci. Numer. Simul. 42, 437–450 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by funding from the Jiangsu Innovation Program for Graduate Education (YL) under Grant No. KYCX17-0233 (Fundamental Research Funds for Central Universities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of interest

We have no competing interests. All authors gave final approval for publication and agree to be accountable for all aspects of the work presented herein.

Human and animal rights

No human or animal subjects were used in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, G. & Tan, X. Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping. Nonlinear Dyn 101, 2157–2180 (2020). https://doi.org/10.1007/s11071-020-05876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05876-0

Keywords

Navigation