Skip to main content

Advertisement

Log in

Passive vibration absorbers for vibration reduction in the multi-bladed rotor with rotor and stator contact

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Contact phenomena are among the most undesirable incidences in a rotor dynamic system where its emergence could be due to the centrifugal force generated by an unbalance disk. In this work, a Jeffcott rotor supported by oil film journal bearings and with rigid blades is taken into account. The long oil film lubrication is considered where the axial flow is negligible. The rotational speed is taken as a control parameter, and the analysis is performed for two different clearances considering the rotor with three, four, and five blades. To reduce the vibrations of the system with the purpose of contact elimination, a tuned mass damper and a nonlinear energy sink as passive absorbers are utilized. Then, by an optimization process applying a complex averaging method, the optimum parameters for each absorber are calculated. Due to the critical behavior of the system in the lower clearance values, double coupling of the absorbers is suggested. The results demonstrate that single coupling of the absorbers can considerably reduce the vibration of the system. On the other hand, for the lower clearance value single coupling is not efficient, and double coupling could be utilized to mitigate the unwanted vibrations of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Popprath, S., Ecker, H.: Nonlinear dynamics of a rotor contacting an elastically suspended stator. J. Sound Vib. 308, 767–784 (2007)

    Article  Google Scholar 

  2. Shen, X., Jia, J., Zhao, M.: Nonlinear analysis of a rub-impact rotor-bearing system with initial permanent rotor bow. J. Appl. Mech. 78, 225–240 (2008)

    MATH  Google Scholar 

  3. Ma, H., Zhao, Q., Zhao, X., Han, Q., Wen, B.: Dynamic characteristics analysis of a rotor–stator system under different rubbing forms. Appl. Math. Model. 39(8), 2392–2408 (2015)

    Article  Google Scholar 

  4. Wan, C., Jian, C.: Non-linear dynamic analysis of dual flexible rotors supported by long journal bearings. Mech. Mach. Theory 45, 844–866 (2010)

    Article  Google Scholar 

  5. LingXiang, Hu, A., Xiong, Y., Xing, J.: Nonlinear coupled dynamics of an asymmetric double-disc rotor-bearing system under rub-impact and oil-film forces. Appl. Math. Model. 40(7–8), 4505–4523 (2016)

    MATH  Google Scholar 

  6. Jacquet-Richardet, G., Torkhani, M., Cartraud, P., Thouverez, F., Nouri, T., Baranger, M., Herran, C., Gibert, S., Baguet, P., Peletan, A.L.: Rotor to stator contacts in turbomachines. Rev. Appl. Mech. Syst. Signal Process. 40, 401–420 (2013)

    Article  Google Scholar 

  7. Najafi, A., Ghazavi, M.R., Jafari, A.A.: Application of Krein’s theorem and bifurcation theory for stability analysis of a bladed rotor. Meccanica 49, 1507–1526 (2014)

    Article  MathSciNet  Google Scholar 

  8. Saeed, N.A., El-Ganaini, W.A.: Time-delayed control to suppress the nonlinear vibrations of a horizontally suspended Jeffcott-rotor system. Appl. Math. Model. 44, 523–539 (2017)

    Article  MathSciNet  Google Scholar 

  9. Thiery, F., Gustavsson, R., Aidanpää, J.O.: Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts. Int. J. Mech. Sci. 99, 251–261 (2015)

    Article  Google Scholar 

  10. Ma, H., Lu, Y., Wu, Z., Tai, X., Li, H., Wen, B.: A new dynamic model of rotor-blade systems. J. Sound Vib. 357, 168–194 (2015)

    Article  Google Scholar 

  11. Guo, C., AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A., Mcfaral, D.M., Yan, J.: Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks. Nonlinear Dyn. 79, 527–538 (2015)

    Article  Google Scholar 

  12. Bab, S., Khadem, S., Shahgholi, M.: Vibration attenuation of a rotor supported by journal bearings with nonlinear suspension under mass eccentricity force using nonlinear energy sink. Meccanica 50, 2441–2460 (2015)

    Article  MathSciNet  Google Scholar 

  13. Taghipour, J., Dardel, M.: Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink. Mech. Syst. Signal Process. 62–63, 164–182 (2015)

    Article  Google Scholar 

  14. Abbasi, A., Khadem, S.E., Bab, S.: Vibration control of a continuous rotating shaft employing high-static low-dynamic stiffness isolators. J. Vib. Control (2016). https://doi.org/10.1177/1077546316651559

    Article  Google Scholar 

  15. Abbasi, A., Khadem, S.E., Bab, S., Friswell, M.I.: Vibration control of a rotor supported by journal bearings and an asymmetric high-static low-dynamic stiffness suspension. Nonlinear Dyn. 85, 525–545 (2016)

    Article  Google Scholar 

  16. Parseh, M., Dardel, M., Hasan Ghasemi, M.: Steady–state dynamics of a non-linear beam coupled to a non-linear energy sink. Int. J. Non-linear Mech. 79, 48–65 (2016)

    Article  Google Scholar 

  17. Saeed, N.A., Kamel, M.: Nonlinear PD-controller to suppress the nonlinear oscillations of horizontally supported Jeffcott-rotor system. Int. J. Nonlinear Mech. 87, 109–124 (2016)

    Article  Google Scholar 

  18. Bab, S., Khadem, S.E., Abbasi, A., Shahgholi, M.: Dynamic stability and nonlinear vibration analysis of a rotor system with flexible/rigid blades. Mech. Mach. Theory 105, 633–653 (2016)

    Article  Google Scholar 

  19. Saeed, N.A., El-Gohary, H.A.: On the nonlinear oscillations of a horizontally supported Jeffcott rotor with a nonlinear restoring force. Nonlinear Dyn. 88, 293–314 (2017)

    Article  Google Scholar 

  20. Przybylowicz, P.M., Starczewski, Z., Korczak-Komorowski, P.: Sensitivity of regions of irregular and chaotic vibrations of an asymmetric rotor supported on journal bearings to structural parameters. Acta Mech. 227, 3101–3112 (2016)

    Article  MathSciNet  Google Scholar 

  21. Zapoměl, J., Ferfecki, P., Forte, P.: Vibrations attenuation of a Jeffcott rotor by application of a new mathematical model of a magnetorheological squeeze film damper based on a bilinear oil representation. Acta Mech. (2019). https://doi.org/10.1007/s00707-018-2343-8

    Article  MATH  Google Scholar 

  22. Wang, C.C.: Nonlinear dynamic behavior and bifurcation analysis of a rigid rotor supported by a relatively short externally pressurized porous gas journal bearing system. Acta Mech. 183, 41–60 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Dardel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

(a) The equations of motion for single TMD in complex averaging form

Dynamic part:

$$\begin{aligned}&a_{1}^{'}\left( 1+M_{bl} \right) +a_{1}^{'}e_{2}-\frac{b_{1}\omega }{2}+a_{1}\zeta _{1}+\frac{b_{1}}{2\omega }-\frac{e_{2}\omega ^{2}q_{03}}{2}-\frac{M_{bl}b_{\mathrm {1}}\omega }{\mathrm {2}}-\frac{b_{1}e_{2}\omega }{2}\nonumber \\&\quad =\frac{G\cos H}{24}+\frac{{\bar{\epsilon }}\omega ^{2}\,\cos \, \beta }{2}+\frac{{\bar{R}}_{s}e_{2}\omega ^{2}}{2},\nonumber \\&a_{2}^{'}\left( 1+M_{bl} \right) \, +a_{2}^{'}e_{2}-\frac{b_{2}\omega }{2}+\, a_{2}\zeta _{1}-\frac{M_{bl}b_{\mathrm {2}}\omega }{\mathrm {2}}-\frac{b_{2}e_{2}\omega }{2} =\frac{\bar{\epsilon }\omega ^{2}\,\sin \, \beta }{2}+\frac{G\sin H}{24},\nonumber \\&a_{3}^{'}e_{2}+a_{3}\zeta _{3}-b_{3}e_{2}\omega +\frac{b_{3}{\bar{k}}_{T}}{2\omega }=0,\nonumber \\&b_{1}^{'}\left( 1+M_{bl} \right) +b_{1}^{'}e_{2}+\frac{a_{1}\omega }{2}+b_{1}\zeta _{1}-\frac{a_{1}}{2\omega }+\frac{M_{bl}a_{\mathrm {1}}\omega }{\mathrm {2}}+\frac{a_{1}e_{2}\omega }{2} =\frac{\bar{\epsilon }\omega ^{2}\,\sin \, \beta }{2}+\frac{G\sin H}{24},\nonumber \\&b_{2}^{'}\left( 1+M_{bl} \right) +b_{2}^{'}e_{2}+\frac{a_{2}\omega }{2}+b_{2}\zeta _{1}-\frac{a_{1}}{2\omega }+\frac{e_{2}\omega ^{2}q_{03}}{2}\nonumber \\&\qquad +\frac{M_{bl}a_{\mathrm {2}}\omega }{\mathrm {2}}+\frac{a_{2}e_{2}\omega }{2}=-\frac{G\cos H}{24}-\frac{{\bar{\epsilon }}\omega ^{2}\,\cos \, \beta }{2}-\frac{{\bar{R}}_{s}e_{2}\omega ^{2}}{2},\nonumber \\&b_{3}^{'}e_{2}+b_{3}\zeta _{3}+a_{3}e_{2}\omega -\frac{a_{3}{\bar{k}}_{T}}{2\omega }=0. \end{aligned}$$
(A.1)

Static part:

$$\begin{aligned} q_{01}= & {} 0,\nonumber \\ q_{02}= & {} -\delta _{st},\nonumber \\ {\bar{k}}_{T}q_{03}-e_{2}\omega ^{2}q_{03}-\frac{a_{2}e_{2}\omega }{2}-\frac{b_{1}e_{2}\omega }{2}= & {} \frac{{\bar{R}}_{s}e_{2}\omega ^{2}}{2}. \end{aligned}$$
(A.2)

(b) The equations of motion for single NES in complex averaging form

Dynamic part:

$$\begin{aligned}&a_{\mathrm {1}}^{\mathrm {'}}\left( \mathrm {1+}M_{bl} \right) +a_{\mathrm {1}}^{\mathrm {'}}e_{\mathrm {2}}-\frac{b_{\mathrm {1}}\omega }{\mathrm {2}}+a_{\mathrm {1}}\zeta _{\mathrm {1}}+\frac{b_{\mathrm {1}}}{\mathrm {2}\omega }-\frac{e_{\mathrm {2}}\omega ^{\mathrm {2}}q_{\mathrm {03}}}{\mathrm {2}}-\frac{M_{bl}b_{\mathrm {1}}\omega }{\mathrm {2}}-\frac{b_{\mathrm {1}}e_{\mathrm {2}}\omega }{\mathrm {2}}\nonumber \\&\quad =\frac{G\,\cos \, H}{\mathrm {24}}+\frac{\bar{\epsilon }\omega ^{\mathrm {2}}\,\cos \, \beta }{\mathrm {2}}+\frac{{\bar{R}}_{s}e_{\mathrm {2}}\omega ^{\mathrm {2}}}{\mathrm {2}},\nonumber \\&a_{\mathrm {2}}^{\mathrm {'}}\left( \mathrm {1+}M_{bl} \right) \, +a_{\mathrm {2}}^{\mathrm {'}}e_{\mathrm {2}}-\frac{b_{\mathrm {2}}\omega }{\mathrm {2}}\mathrm {+\, }a_{\mathrm {2}}\zeta _{\mathrm {1}}+\frac{b_{\mathrm {2}}}{\mathrm {2}\omega }-\frac{M_{bl}b_{\mathrm {2}}\omega }{\mathrm {2}}-\frac{b_{\mathrm {2}}e_{\mathrm {2}}\omega }{\mathrm {2}}=\frac{{\bar{\epsilon }}\omega ^{\mathrm {2}} \,\sin \, \beta }{\mathrm {2}}+\frac{G\,\sin \, H}{\mathrm {24}},\nonumber \\&a_{\mathrm {3}}^{\mathrm {'}}e_{\mathrm {2}}+a_{\mathrm {3}}\zeta _{\mathrm {3}}+\frac{\mathrm {3}b_{\mathrm {3}}^{\mathrm {3}}{\bar{k}}_{N}}{\mathrm {8}\omega ^{\mathrm {3}}}-b_{\mathrm {3}}e_{\mathrm {2}}\omega +\frac{\mathrm {3}a_{\mathrm {3}}^{\mathrm {2}}b_{\mathrm {3}}{\bar{k}}_{N}}{\mathrm {8}\omega ^{\mathrm {3}}}+\frac{\mathrm {3}b_{\mathrm {3}}{\bar{k}}_{N}q_{\mathrm {03}}^{\mathrm {2}}}{\mathrm {2}\omega }=0,\nonumber \\&b_{\mathrm {1}}^{\mathrm {'}}\left( \mathrm {1+}M_{bl} \right) +b_{\mathrm {1}}^{\mathrm {'}}e_{\mathrm {2}}+\frac{a_{\mathrm {1}}\omega }{\mathrm {2}}+b_{\mathrm {1}}\zeta _{\mathrm {1}}-\frac{a_{\mathrm {1}}}{\mathrm {2}\omega }+\frac{M_{bl}a_{\mathrm {1}}\omega }{\mathrm {2}}+\frac{a_{\mathrm {1}}e_{\mathrm {2}}\omega }{\mathrm {2}}=\frac{{\bar{\epsilon }}\omega ^{\mathrm {2}}\,\textit{sin}\, \beta }{\mathrm {2}}+\frac{G\,\textit{sin}\, H}{\mathrm {24}},\nonumber \\&b_{\mathrm {2}}^{\mathrm {'}}\left( \mathrm {1+}M_{bl} \right) +b_{\mathrm {2}}^{\mathrm {'}}e_{\mathrm {2}}+\frac{a_{\mathrm {2}}\omega }{\mathrm {2}}+b_{\mathrm {2}}\zeta _{\mathrm {1}}-\frac{a_{\mathrm {2}}}{\mathrm {2}\omega }+\frac{e_{\mathrm {2}}\omega ^{\mathrm {2}}q_{\mathrm {03}}}{\mathrm {2}}+\frac{M_{bl}a_{\mathrm {2}}\omega }{\mathrm {2}}+\frac{a_{\mathrm {2}}e_{\mathrm {2}}\omega }{\mathrm {2}}\nonumber \\&\quad =-\frac{G\,\cos \, H}{\mathrm {24}}-\frac{\bar{\epsilon }\omega ^{\mathrm {2}}\,\cos \, \beta }{\mathrm {2}}-\frac{{\bar{R}}_{s}e_{\mathrm {2}}\omega ^{\mathrm {2}}}{\mathrm {2}},\nonumber \\&b_{\mathrm {3}}^{\mathrm {'}}e_{\mathrm {2}}+b_{\mathrm {3}}\zeta _{\mathrm {3}}\, -\frac{\mathrm {3}a_{\mathrm {3}}^{\mathrm {3}}{\bar{k}}_{N}}{\mathrm {8}\omega ^{\mathrm {3}}}+a_{\mathrm {3}}e_{\mathrm {2}}\omega -\frac{\mathrm {3}a_{\mathrm {3}}b_{\mathrm {3}}^{\mathrm {2}}{\bar{k}}_{N}}{\mathrm {8}\omega ^{\mathrm {3}}}-\frac{\mathrm {3}a_{\mathrm {3}}{\bar{k}}_{N}q_{\mathrm {03}}^{\mathrm {2}}}{\mathrm {2}\omega }=0. \end{aligned}$$
(A.3)

Static part:

$$\begin{aligned} q_{01}= & {} 0,\nonumber \\ q_{02}= & {} -\delta _{st},\nonumber \\ {\bar{k}}_{N}q_{03}^{3}-e_{2}\omega ^{2}q_{03}-\frac{a_{2}e_{\mathrm {2}}\omega }{2}-\frac{b_{1}e_{\mathrm {2}}\omega }{2}+\frac{3a_{3}^{2}{\bar{k}}_{N}q_{03}}{2\omega ^{2}}+\frac{3b_{3}^{2}{\bar{k}}_{N}q_{03}}{2\omega ^{2}}= & {} \frac{{\bar{R}}_{s}e_{\mathrm {2}}\omega ^{2}}{2}. \end{aligned}$$
(A.4)

(c) The equations of motion for double TMD in complex averaging form

Dynamic part:

$$\begin{aligned}&a_{1}^{'}\left( 1+M_{bl} \right) +a_{1}^{'}\left( e_{2}+e_{3} \right) -\frac{b_{1}\omega }{2}+a_{1}\zeta _{1}+\frac{b_{1}}{2\omega }-\frac{M_{bl}b_{\mathrm {1}}\omega }{\mathrm {2}}-\frac{b_{1}\omega }{2}\left( e_{2}+e_{3} \right) \nonumber \\&\quad -\frac{\omega ^{2}}{2}\left( q_{03}e_{2}\cos \beta _{1}+q_{04}e_{3}\cos \beta _{2} \right) =\frac{G\cos H}{24}+\frac{{\bar{\epsilon }}\omega ^{2}}{2}+\frac{{\bar{R}}_{s}\omega ^{2}}{2}\left( e_{2}\cos \beta _{1}+e_{3}\cos \beta _{2} \right) ,\nonumber \\&a_{2}^{'}\left( 1+M_{bl} \right) \, +a_{2}^{'}\left( e_{2}+e_{3} \right) -\frac{b_{2}\omega }{2}+\, a_{2}\zeta _{1}+\frac{b_{2}}{2\omega }-\frac{M_{bl}b_{\mathrm {2}}\omega }{\mathrm {2}}-\frac{b_{2}\omega }{2}\left( e_{2}+e_{3} \right) \nonumber \\&\quad -\frac{\omega ^{2}q_{03}}{2}\left( q_{03}e_{2}\sin \beta _{1}+q_{04}e_{3}\sin \beta _{2} \right) =\frac{G\sin H}{24}+\frac{{\bar{R}}_{s}\omega ^{2}}{2}\left( e_{2}\sin \beta _{1}+e_{3}\sin \beta _{2} \right) ,\nonumber \\&a_{3}^{'}e_{2}+a_{3}\zeta _{3}-b_{3}e_{2}\omega +\frac{b_{3}{\bar{k}}_{T1}}{2\omega }=0,\nonumber \\&a_{4}^{'}e_{3}+a_{4}\zeta _{4}-b_{4}e_{3}\omega +\frac{b_{4}{\bar{k}}_{T2}}{2\omega }=0,\nonumber \\&b_{1}^{'}\left( 1+M_{bl} \right) +b_{1}^{'}\left( e_{2}+e_{3} \right) +\frac{a_{1}\omega }{2}+b_{1}\zeta _{1}-\frac{a_{1}}{2\omega }+\frac{M_{bl}a_{\mathrm {1}}\omega }{\mathrm {2}}+\frac{a_{1}\omega }{2}\left( e_{2}+e_{3} \right) \nonumber \\&\quad -\frac{\omega ^{2}}{2}\left( q_{03}e_{2}\sin \beta _{1}+q_{04}e_{3}\sin \beta _{2} \right) =\frac{G\sin H}{24}+\frac{{\bar{R}}_{s}\omega ^{2}}{2}\left( e_{2}\sin \beta _{1}+e_{3}\sin \beta _{2} \right) ,\nonumber \\&b_{2}^{'} \left( 1+M_{bl} \right) +b_{2}^{'}\left( e_{2}+e_{3} \right) +\frac{a_{2}\omega }{2}+b_{2}\zeta _{1}-\frac{a_{2}}{2\omega }+\frac{M_{bl}a_{\mathrm {2}}\omega }{\mathrm {2}}+\frac{a_{2}\omega }{2}\left( e_{2}+e_{3} \right) \nonumber \\&\quad +\frac{\omega ^{2}}{2}\left( q_{03}e_{2}\cos \beta _{1}+q_{04}e_{3}\cos \beta _{2} \right) =-\frac{G\cos H}{24}-\frac{{\bar{\epsilon }}\omega ^{2}}{2}-\frac{{\bar{R}}_{s}\omega ^{2}}{2}\left( e_{2}\cos \beta _{1}+e_{3}\cos \beta _{2} \right) ,\nonumber \\&b_{3}^{'}e_{2}+b_{3}\zeta _{3}+a_{3}e_{2}\omega -\frac{a_{3}{\bar{k}}_{T1}}{2\omega }=0,\nonumber \\&b_{4}^{'}e_{3}+b_{4}\zeta _{4}+a_{4}e_{3}\omega -\frac{a_{4}{\bar{k}}_{T2}}{2\omega }=0. \end{aligned}$$
(A.5)

Static part:

$$\begin{aligned}&q_{01}=0,\nonumber \\&q_{02}=-\delta _{st},\nonumber \\&{\bar{k}}_{T1}q_{03}-e_{2}\omega ^{2}q_{03}-\frac{a_{2}e_{2}\omega \cos \beta _{1}}{2}-\frac{b_{1}e_{2}\omega \cos \beta _{1}}{2}+\frac{a_{1}e_{2}\omega \sin \beta _{1}}{2}-\frac{b_{2}e_{2}\omega \sin \beta _{1}}{2}=\frac{{\bar{R}}_{s}e_{2}\omega ^{2}}{2},\nonumber \\&{\bar{k}}_{T2}q_{04}-e_{3}\varvec{\omega }^{2}q_{04}-\frac{a_{2}e_{3}\varvec{\omega }\cos \beta _{1}}{2}-\frac{b_{1}e_{3}\varvec{\omega }\cos \beta _{1}}{2}+\frac{a_{1}e_{3}\varvec{\omega }\sin \beta _{1}}{2}-\frac{b_{2}e_{3}\varvec{\omega }\sin \beta _{1}}{2}=\frac{{\bar{R}}_{s}e_{3}\varvec{\omega }^{2}}{2}. \end{aligned}$$
(A.6)

(d) The equations of motion for double NES in complexification averaging form

Dynamic part:

$$\begin{aligned}&\left( 1+M_{bl} \right) +a_{1}^{'}\left( e_{2}+e_{3} \right) -\frac{b_{1}\varvec{\omega }}{2}+a_{1}\zeta _{1}+\frac{b_{1}}{2\varvec{\omega }}-\frac{M_{bl}b_{\mathrm {1}}\varvec{\omega }}{\mathrm {2}}-\frac{b_{1}\varvec{\omega }}{2}\left( e_{2}+e_{3} \right) \nonumber \\&\quad -\frac{\varvec{\omega }^{2}}{2}\left( q_{03}e_{2}\cos \beta _{1}+q_{04}e_{3}\cos \beta _{2} \right) =\frac{G\cos H}{24}+\frac{{\bar{\epsilon }}\varvec{\omega }^{2}}{2}+\frac{{\bar{R}}_{s}\varvec{\omega }^{2}}{2}\left( e_{2}\cos \beta _{1}+e_{3}\cos \beta _{2} \right) ,\nonumber \\&a_{2}^{'}\left( 1+M_{bl} \right) \, +a_{2}^{'}\left( e_{2}+e_{3} \right) -\frac{b_{2}\varvec{\omega }}{2}+\, a_{2}\zeta _{1}+\frac{b_{2}}{2\varvec{\omega }}-\frac{M_{bl}b_{\mathrm {2}}\varvec{\omega }}{\mathrm {2}}-\frac{b_{2}\varvec{\omega }}{2}\left( e_{2}+e_{3} \right) \nonumber \\&-\frac{\varvec{\omega }^{2}}{2}\left( q_{03}e_{2}\sin \beta _{1}+q_{04}e_{3}\sin \beta _{2} \right) =\frac{G\sin H}{24}+\frac{{\bar{R}}_{s}\varvec{\omega }^{2}}{2}\left( e_{2}\sin \beta _{1}+e_{3}\sin \beta _{2} \right) ,\nonumber \\&a_{3}^{'}e_{2}+a_{3}\zeta _{3}+\frac{\mathrm {3}b_{\mathrm {3}}^{\mathrm {3}}{\bar{k}}_{N\mathrm {1}}}{\mathrm {8}\varvec{\omega }^{\mathrm {3}}}-b_{3}e_{2}\varvec{\omega }+\frac{\mathrm {3}\mathrm {a}_{\mathrm {3}}^{\mathrm {2}}b_{3}{\bar{k}}_{N\mathrm {1}}}{\mathrm {8}\varvec{\omega }^{\mathrm {3}}}+\frac{\mathrm {3}b_{\mathrm {3}}q_{03}^{2}{\bar{k}}_{N\mathrm {1}}}{\mathrm {2}\varvec{\omega }}=0,\nonumber \\&a_{4}^{'}e_{3}+a_{4}\zeta _{4}+\frac{\mathrm {3}b_{\mathrm {4}}^{\mathrm {3}}{\bar{k}}_{N\mathrm {2}}}{\mathrm {8}\varvec{\omega }^{\mathrm {3}}}-b_{4}e_{3}\varvec{\omega }+\frac{\mathrm {3}\mathrm {a}_{\mathrm {4}}^{\mathrm {2}}b_{4}{\bar{k}}_{N2}}{\mathrm {8}\varvec{\omega }^{\mathrm {3}}}+\frac{\mathrm {3}b_{4}q_{04}^{2}{\bar{k}}_{N\mathrm {2}}}{\mathrm {2}\varvec{\omega }}=0,\nonumber \\&b_{1}^{'}\left( 1+M_{bl} \right) +b_{1}^{'}\left( e_{2}+e_{3} \right) +\frac{a_{1}\varvec{\omega }}{2}+b_{1}\zeta _{1}-\frac{a_{1}}{2\varvec{\omega }}+\frac{M_{bl}a_{\mathrm {1}}\varvec{\omega }}{\mathrm {2}}+\frac{a_{1}\varvec{\omega }}{2}\left( e_{2}+e_{3} \right) \nonumber \\&\quad -\frac{\varvec{\omega }^{2}}{2}\left( q_{03}e_{2}\sin \beta _{1}+q_{04}e_{3}\sin \beta _{2} \right) =\frac{G\sin H}{24}+\frac{{\bar{R}}_{s}\varvec{\omega }^{2}}{2}\left( e_{2}\sin \beta _{1}+e_{3}\sin \beta _{2} \right) ,\nonumber \\&b_{2}^{'}\left( 1+M_{bl} \right) +b_{2}^{'}\left( e_{2}+e_{3} \right) +\frac{a_{2}\varvec{\omega }}{2}+b_{2}\zeta _{1}-\frac{a_{2}}{2\varvec{\omega }}+\frac{M_{bl}a_{\mathrm {2}}\varvec{\omega }}{\mathrm {2}}+\frac{a_{2}\varvec{\omega }}{2}\left( e_{2}+e_{3} \right) \nonumber \\&+\frac{\varvec{\omega }^{2}}{2}\left( q_{03}e_{2}\cos \beta _{1}+q_{04}e_{3}\cos \beta _{2} \right) =-\frac{G\cos H}{24}-\frac{{\bar{\epsilon }}\varvec{\omega }^{2}}{2}-\frac{{\bar{R}}_{s}\varvec{\omega }^{2}}{2}\left( e_{2}\cos \beta _{1}+e_{3}\cos \beta _{2} \right) ,\nonumber \\&b_{\mathrm {3}}^{\mathrm {'}}e_{\mathrm {2}}+b_{\mathrm {3}}\zeta _{\mathrm {3}}\, -\frac{\mathrm {3}a_{\mathrm {3}}^{\mathrm {3}}{\bar{k}}_{N\mathrm {1}}}{\mathrm {8}\varvec{\omega }^{\mathrm {3}}}+a_{\mathrm {3}}e_{\mathrm {2}}\varvec{\omega }-\frac{\mathrm {3}a_{\mathrm {3}}b_{\mathrm {3}}^{\mathrm {2}}{\bar{k}}_{N\mathrm {1}}}{\mathrm {8}\varvec{\omega }^{\mathrm {3}}}-\frac{\mathrm {3}a_{\mathrm {3}}{\bar{k}}_{N\mathrm {1}}q_{\mathrm {03}}^{\mathrm {2}}}{\mathrm {2}\varvec{\omega }}=0,\nonumber \\&b_{\mathrm {4}}^{\mathrm {'}}e_{\mathrm {3}}+b_{4}\zeta _{\mathrm {4}}\, -\frac{\mathrm {3}a_{4}^{\mathrm {3}}{\bar{k}}_{N25}}{\mathrm {8}\varvec{\omega }^{\mathrm {3}}}+a_{4}e_{3}\varvec{\omega }-\frac{\mathrm {3}a_{4}b_{4}^{\mathrm {2}}{\bar{k}}_{N\mathrm {2}}}{\mathrm {8}\varvec{\omega }^{\mathrm {3}}}-\frac{\mathrm {3}a_{\mathrm {4}}{\bar{k}}_{N\mathrm {2}}q_{\mathrm {04}}^{\mathrm {2}}}{\mathrm {2}\varvec{\omega }}=0. \end{aligned}$$
(A.7)

Static part:

$$\begin{aligned}&q_{01}=0,\nonumber \\&q_{02}=-\delta _{st},\nonumber \\&{\bar{k}}_{N1}q_{03}^{3}-e_{2}\varvec{\omega }^{2}q_{03}-\frac{a_{2}e_{\mathrm {2}}\varvec{\omega }\cos \beta _{1}}{2}-\frac{b_{1}e_{\mathrm {2}}\varvec{\omega }\cos \beta _{1}}{2}+\frac{a_{1}e_{\mathrm {2}}\varvec{\omega }\sin \beta _{1}}{2}-\frac{b_{2}e_{\mathrm {2}}\varvec{\omega }\sin \beta _{1}}{2}\nonumber \\&\quad +\frac{3a_{3}^{2}{\bar{k}}_{N1}q_{03}}{2\varvec{\omega }^{2}}+\frac{3b_{3}^{2}{\bar{k}}_{N1}q_{03}}{2\varvec{\omega }^{2}}=\frac{{\bar{R}}_{s}e_{\mathrm {2}}\varvec{\omega }^{2}}{2},\nonumber \\&{\bar{k}}_{N2}q_{04}^{3}-e_{3}\varvec{\omega }^{2}q_{04}-\frac{a_{2}e_{\mathrm {3}}\varvec{\omega }\cos \beta _{2}}{2}-\frac{b_{1}e_{\mathrm {3}}\varvec{\omega }\cos \beta _{2}}{2}+\frac{a_{1}e_{\mathrm {3}}\varvec{\omega }\sin \beta _{1}}{2}-\frac{b_{2}e_{\mathrm {3}}\varvec{\omega }\sin \beta _{1}}{2}\nonumber \\&\quad +\frac{3a_{4}^{2}{\bar{k}}_{N1}q_{04}}{2\varvec{\omega }^{2}}+\frac{3b_{4}^{2}{\bar{k}}_{N1}q_{04}}{2\varvec{\omega }^{2}}=\frac{{\bar{R}}_{s}e_{\mathrm {3}}\varvec{\omega }^{2}}{2}. \end{aligned}$$
(A.8)

Appendix B

In this Section, a review of the concepts of dominating stiffness, damping, and inertia regions in the frequency response function of a linear single-degree-of-freedom vibration system is considered. The frequency response of a one-degree freedom mass–spring–damper under an external harmonic force has the following form, which is shown in Fig. 17:

$$\begin{aligned} \frac{X}{F}=\frac{1}{\sqrt{\left( k-m\omega ^{2} \right) +\left( c\omega \right) ^{2}} }=\frac{1}{k}\frac{1}{\sqrt{\left( 1-\Omega ^{2} \right) +\left( 2\zeta \Omega \right) ^{2}} },\, \Omega =\frac{\omega }{\omega _{n}},\, \zeta =\frac{c}{2m\omega _{n}},\, \omega _{n}=\sqrt{\frac{k}{m}}. \end{aligned}$$
(B.1)
Fig. 17
figure 17

The concepts of dominating stiffness, damping, and inertia regions in the frequency response function of a linear single-degree-of-freedom vibration system

In low dimensionless frequencies, for example in the domain of \(0\le \Omega \le 0.3\), \(1-\Omega ^{2}\approx \, 1\), and \(\frac{X}{F}\approx \frac{1}{k}\), the force of the spring is the dominant force. Accordingly, in this region increasing or decreasing the stiffness of spring value, the amount of displacement can be decreased or increased as well. In a damping dominant region, for example in the domain of \(0.3\le \Omega \le 1.5\), the force of the damper is the dominant force. Adjusting the damping coefficient in this region, the amount of displacement, especially in the resonance frequency, can be controlled. In this region, the vibration amplitude is approximately \(X\approx F/C\omega \). For \(\Omega \ge 1.5\), the inertia force is dominating whereby increasing the actuating frequency the amplitude of vibration is approximately given by \(X\approx F/m\omega ^{2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehrani, G.G., Dardel, M. & Pashaei, M.H. Passive vibration absorbers for vibration reduction in the multi-bladed rotor with rotor and stator contact. Acta Mech 231, 597–623 (2020). https://doi.org/10.1007/s00707-019-02557-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02557-x

Navigation