Skip to main content
Log in

Order and chaos around resonant motion in librating spring–mass–spherical pendulum

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Using both analytical and numerical techniques, we investigate the 3-degree-of-freedom, autonomous, autoparametric, Hamiltonian spring–mass–pendulum system in libration and reveal the order–chaos–order transition with the change in the ratio of frequencies of corresponding independent normal modes. In the process, we also present an integrable limit of it and find all the three independent constants of motion. Furthermore, we study the possibility of the precession of the swing plane of the constituent spherical pendulum and the related energy exchanges between the modes at the autoparametric resonance. We use the method of the fast Lyapunov indicators to characterise and distinguish the order and the chaos in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shinbrot, T., Grebogi, C., Wisdom, J., Yorke, J.A.: Chaos in a double pendulum. Am. J. Phys. 60(6), 491–499 (1992)

    Article  Google Scholar 

  2. Tufillaro, N.B., Abbott, T.A., Griffiths, D.J.: Swinging Atwood’s machine. Am. J. Phys. 52(10), 895–903 (1984)

    Article  Google Scholar 

  3. Tufillaro, N.: Integrable motion of a swinging Atwood’s machine. Am. J. Phys. 54(2), 142–143 (1986)

    Article  Google Scholar 

  4. Elmandouh, A.A.: On the integrability of the motion of 3d-swinging Atwood machine and related problems. Phys. Lett. A 380(9–10), 989–991 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Leven, R.W., Koch, B.P.: Chaotic behaviour of a parametrically excited damped pendulum. Phys. Lett. A 86(2), 71–74 (1981)

    Article  Google Scholar 

  6. van der Weele, J.P., de Kleine, E.: The order-chaos-order sequence in the spring pendulum. Phys. A Stat. Mech. Appl. 228(1–4), 245–272 (1996)

    Article  Google Scholar 

  7. Anurag, B.M., Bhattacharjee, J., Chakraborty, S.: Understanding the order-chaos-order transition in the planar elastic pendulum. Phys. D Nonlinear Phenomena 402, 132256 (2020)

    Article  MathSciNet  Google Scholar 

  8. Anurag, B.M., Shah, T., Chakraborty, S.: Chaos and order in librating quantum planar elastic pendulum. Nonlinear Dyn. 103, 2841–2853 (2021)

    Article  Google Scholar 

  9. Georgiou, I.T., Schwartz, I.B.: The slow invariant manifold of a conservative pendulum-oscillator system. Int. J. Bifurc. Chaos 06(04), 673–692 (1996)

    Article  MATH  Google Scholar 

  10. Wang, F., Bajaj, A.K., Kamiya, K.: Nonlinear normal modes and their bifurcations for an inertially coupled nonlinear conservative system. Nonlinear Dyn. 42(3), 233–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hatwal, H., Mallik, A.K., Ghosh, A.: Non-linear vibrations of a harmonically excited autoparametric system. J. Sound Vib. 81(2), 153–164 (1982)

    Article  MATH  Google Scholar 

  12. El Rifai, K., Haller, G., Bajaj, A.K.: Global dynamics of an autoparametric spring-mass-pendulum system. Nonlinear Dyn. 49(1–2), 105–116 (2007)

    Article  MATH  Google Scholar 

  13. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillation. Wiley, New York (1979)

    MATH  Google Scholar 

  14. Lynch, P.: Resonant motions of the three-dimensional elastic pendulum. Int. J. Non-Linear Mech. 37(2), 345–367 (2002)

    Article  MATH  Google Scholar 

  15. Lynch, P.: Resonant Rossby wave triads and the swinging spring. Bull. Am. Meteorol. Soc. 84(5), 605–616 (2003)

    Article  Google Scholar 

  16. Hatwal, H., Mallik, A.K., Ghosh, A.: Forced nonlinear oscillations of an autoparametric system—part 1: periodic responses (1983)

  17. Hatwal, H., Mallik, A.K., Ghosh, A.: Forced nonlinear oscillations of an autoparametric system—part 2: chaotic responses (1983)

  18. Bajaj, A.K., Chang, S.I., Johnson, J.M.: Amplitude modulated dynamics of a resonantly excited autoparametric two degree-of-freedom system. Nonlinear Dyn. 5(4), 433–457 (1994)

    Article  Google Scholar 

  19. Banerjee, B., Bajaj, A.K., Davies, P.: Resonant dynamics of an autoparametric system: a study using higher-order averaging. Int. J. Non-Linear Mech. 31(1), 21–39 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sheheitli, H., Rand, R.H.: Dynamics of a mass-spring-pendulum system with vastly different frequencies. Nonlinear Dyn. 70(1), 25–41 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics: An Introduction. Wiley-Interscience, London (1989)

    MATH  Google Scholar 

  22. Shojiguchi, A., Li, C.-B., Komatsuzaki, T., Toda, M.: Fractional behavior in multidimensional Hamiltonian systems describing reactions. Phys. Rev. E 76, 056205 (2007)

    Article  Google Scholar 

  23. Bunimovich, L.A.: Relative volume of Kolmogorov–Arnold—Moser tori and uniform distribution, stickiness and nonstickiness in Hamiltonian systems. Nonlinearity 21(2), T13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lange, S., Bäcker, A., Ketzmerick, R.: What is the mechanism of power-law distributed Poincaré recurrences in higher-dimensional systems? EPL (Europhys. Lett.) 116(3), 30002 (2016)

    Article  Google Scholar 

  25. Martens, C.C., Davis, M.J., Ezra, G.S.: Local frequency analysis of chaotic motion in multidimensional systems: Energy transport and bottlenecks in planar OCS. Chem. Phys. Lett. 142(6), 519–528 (1987)

    Article  Google Scholar 

  26. Semparithi, A., Keshavamurthy, S.: Intramolecular vibrational energy redistribution as state space diffusion: classical-quantum correspondence. J. Chem. Phys. 125(14), 141101 (2006)

    Article  Google Scholar 

  27. Juan Carlos Muzzio: Partially chaotic orbits in a perturbed cubic force model. Mon. Not. R. Astron. Soc. 471(4), 4099–4110 (2017)

    Article  Google Scholar 

  28. Karmakar, S., Keshavamurthy, S.: Intramolecular vibrational energy redistribution and the quantum ergodicity transition: a phase space perspective. Phys. Chem. Chem. Phys. 22(20), 11139–11173 (2020)

    Article  Google Scholar 

  29. Arnold, V.I.: Instability of dynamical systems with several degrees of freedom. Collected Works, vol. 1, pp. 423–427. Springer, Berlin (2009)

    Chapter  Google Scholar 

  30. Benest, D., Froeschle, C., Lega, E.: Topics in Gravitational Dynamics: Solar, Extra-Solar and Galactic Systems, vol. 729. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  31. Froeschlé, C., Guzzo, M., Lega, E.: Graphical evolution of the Arnold web: from order to chaos. Science 289(5487), 2108–2110 (2000)

    Article  Google Scholar 

  32. Cordani, B.: Frequency modulation indicator, Arnold’s web and diffusion in the Stark–Quadratic–Zeeman problem. Phys. D 237(21), 2797–2815 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Barrio, R., Borczyk, W., Breiter, S.: Spurious structures in chaos indicators maps. Chaos Soliton Fract. 40(4), 1697–1714 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maffione, N.P., Darriba, L.A., Cincotta, P.M., Giordano, C.M.: A comparison of different indicators of chaos based on the deviation vectors: application to symplectic mappings. Celest. Mech. Dyn. Astron. 111(3), 285 (2011)

    Article  MathSciNet  Google Scholar 

  35. Claude, F., Elena, L., Robert, G.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67(1), 41–62 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Karmakar, S., Keshavamurthy, S.: Relevance of the resonance junctions on the Arnold web to dynamical tunneling and eigenstate delocalization. J. Phys. Chem. A 122(43), 8636–8649 (2018)

    Article  Google Scholar 

  37. José, J.V., Saletan, E.J.: Classical Dynamics: A Contemporary Approach. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  38. Nayfeh, A.H.: Perturbation Methods. Wiley, London (2008)

    Google Scholar 

  39. Jeon, D.-O., Hwang, K.R., Jang, J.H., Jin, H., Jang, H.: Sixth-order resonance of high-intensity linear accelerators. Phys. Rev. Lett. 114(18), 184802 (2015)

    Article  Google Scholar 

  40. Lichtenberg, A., Lieberman, M.: Regular and Chaotic Dynamics. Springer, New York (1992)

    Book  MATH  Google Scholar 

  41. Dullin, H., Giacobbe, A., Cushman, R.: Monodromy in the resonant swing spring. Phys. D 190(1–2), 15–37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Fitch, N.J., Weidner, C.A.: Parazzoli LP, Dullin HR, Lewandowski HJ: Experimental demonstration of classical Hamiltonian monodromy in the \(1\mathbin :1\mathbin :2\) resonant elastic pendulum. Phys. Rev. Lett. 103(3), 034301 (2009)

    Article  Google Scholar 

  43. Cushman, R.H., Dullin, H.R., Giacobbe, A., Holm, D.D., Joyeux, M., Lynch, P., Sadovskií, D.A., Zhilinskií, B.I.: \(\rm C\rm O\rm _{2}\) molecule as a quantum realization of the \(1\mathbin :1\mathbin :2\) resonant swing-spring with monodromy. Phys. Rev. Lett. 93, 024302 (2004)

  44. Giacobbe, A., Cushman, R.H., Sadovskií, D.A., Zhilinskií, B.I.: Monodromy of the quantum 1: 1: 2 resonant swing spring. J. Math. Phys. 45(12), 5076–5100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Winnewisser, B.P., Winnewisser, M., Medvedev, I.R., Behnke, M., De Lucia, F.C., Ross, S.C., Koput, J.: Experimental confirmation of quantum monodromy: the millimeter wave spectrum of cyanogen isothiocyanate ncncs. Phys. Rev. Lett. 95(24), 243002 (2005)

    Article  Google Scholar 

  46. Alexander, G.P., Vladimir, V.V.: Nonlinear oscillations of a spring pendulum at the 1: 1: 2 resonance: theory, experiment, and physical analogies. Proc. Steklov Inst. Math. 300(1), 159–167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Swimm, R.T., Delos, J.B.: Semiclassical calculations of vibrational energy levels for nonseparable systems using the Birkhoff–Gustavson normal form. J. Chem. Phys. 71(4), 1706–1717 (1979)

    Article  MathSciNet  Google Scholar 

  48. Lowenstein, J.H.: Essentials of Hamiltonian Dynamics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  49. Bhattacharjee, J.K., Mallik, A.K., Chakraborty, S.: An introduction to nonlinear oscillators: a pedagogical review. Indian J. Phys. 81, 1115–1175 (2007)

    Google Scholar 

  50. Armitage, J.V., Eberlein, W.F.: Elliptic Functions, vol. 67. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  51. Wolfram Research, Inc. Mathematica, Version 10

  52. Lega, E., Froeschlé, C.: On the relationship between fast lyapunov indicator and periodic orbits for symplectic mappings. In: Dynamics of Natural and Artificial Celestial Bodies. Springer, Berlin, pp 129–147 (2001)

Download references

Acknowledgements

The authors thank Jayanta Kumar Bhattacharjee, Sourav Karmakar, and Srihari Keshavamurthy for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Comparison with the numerical solutions of exact system

Appendix: Comparison with the numerical solutions of exact system

To ascertain the robustness of the perturbative techniques and various other approximations made in Sect. 5, we must compare the unmodulated and modulated solutions with the numerical integration of the exact equations of motion of the SMSP. Comparing these two solutions, we see that the perturbative solutions of the unmodulated and modulated cases closely match the solutions of the exact system. To this end, we present Fig. 9 similar to Fig. 3, except for the fact that here we use exact equations of motion (Eqs. 2a2c) instead of the approximated equations of motion (Eqs. 26a26c). We use the same initial conditions as used in Fig. 3.

Fig. 9
figure 9

Precession of the swing plane about the z- axis is observed. Here, we compare the unmodulated and the modulated solutions with the numerical solutions of the exact system (Eqs. 2a2c). The first column depicts the results for the unmodulated solutions (subplots (a)–(e)), while the second column shows the results for the modulated solution (subplots (f)–(g)). Subplot (a) and subplot (f) depict the precession about the z-axis in the unmodulated case and the modulated case, respectively. In subplots (b) and (g), we, respectively, plot \(\rho \equiv \sqrt{x^2+y^2}\) versus t for the unmodulated and the modulated solutions in dark red; the amplitudes A (black solid line) and B (black dashed line) closely follow the extrema of \(\rho \). Similarly, in subplots (e) and (j), we plot z versus t for both the cases in dark red. Here also, the amplitude C (green solid line) closely follows the extremum of z. Here, \(\alpha \) is fixed at 0.3

In Fig. 9a, we observe a precession of \(90^\circ \) in the x-y plane, on integrating up to \(t=836\) units, as observed in Fig. 3a. Additionally, it may be noted (as shown in Fig. 9b) that similar to Fig. 3b, here also, A and B closely follow, respectively, the maxima and the minima of \(\rho \equiv \sqrt{x^2+y^2}\),the radial distance from the z-axis. In Fig. 9c–e, we plot the time series for x, y and z of exact system. Also, C follows the extrema of z as can be seen in Fig. 9e.

In Fig. 9f, we observe a precession of the swing plane in the clockwise sense for the exact system. Additionally, in Fig. 9g, j, respectively, we see that analytically calculated (using Eqs. (33a)–(33f)) A and B closely follow the extrema of the numerically found \(\rho \) using the equations of motion of the exact system and the solution for C obtained from the modulated equations also closely follows the extrema of z for the exact system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anurag, Das, A. & Chakraborty, S. Order and chaos around resonant motion in librating spring–mass–spherical pendulum. Nonlinear Dyn 104, 3407–3424 (2021). https://doi.org/10.1007/s11071-021-06455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06455-7

Keywords

Navigation