Skip to main content
Log in

Global dynamics of an autoparametric spring–mass–pendulum system

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a study of the global dynamics of an autoparametric four degree-of-freedom (DOF) spring–mass–pendulum system with a rigid body mode is presented. Following a modal decoupling procedure, typical approximate periodic solutions are obtained for the autoparametrically coupled modes in 1:2 internal resonance. A novel technique based on forward-time solutions for finite-time Lyapunov exponent is used to establish global convergence and domains of attraction of different solutions. The results are compared to numerically constructed domains of attraction in the plane of initial position and initial velocity for the pendulum. Simulations are also provided for a few interesting cases of interest near critical values of parameters. Results also shed some light on the role played by other modes present in a multi-DOF system in shaping the overall system response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, 175–201 (1989)

    Article  MathSciNet  Google Scholar 

  2. 2Nayfeh, A.H.: Nonlinear interactions. Wiley, New York (2000)

    MATH  Google Scholar 

  3. Hatwal, H., Mallik, A.K., Ghosh, A.: Nonlinear vibrations of a harmonically excited autoparametric system. J. Sound Vibrat. 81, 153–164 (1980)

    Article  MathSciNet  Google Scholar 

  4. Bajaj, A.K., Chang, S.I., Johnson, J.: Amplitude modulated dynamics of a resonantly excited autoparametric two degree-of-freedom system. Nonlinear Dyn. 5, 433–457 (1994)

    Article  Google Scholar 

  5. Cuvalci, O., Ertas, A.: Pendulum as vibration absorber for flexible structures: experiments and theory. ASME J. Vibrat. Acoust. 118, 558–566 (1996)

    Google Scholar 

  6. Cuvalci, O.: The effect of detuning parameters on the absorption region for a coupled system: a numerical and experiments study. J. Sound Vibrat. 229(4), 837–857 (2000)

    Article  Google Scholar 

  7. Song, Y., Sato, H., Iwata, Y., Komatsuzaki, T.: The response of a dynamic vibration absorber system with a parametrically excited pendulum. J. Sound Vibrat. 259(4), 747–759 (2003)

    Article  Google Scholar 

  8. Cartmell, M., Lawson, J.: Performance enhancement of an autoparametric vibration absorber by means of computer control. J. Sound Vibrat. 177, 173–195 (1994)

    Article  MATH  Google Scholar 

  9. Oueini, S.S., Nayfeh, A.H., Pratt, J.R.: A review of development and implementation of an active nonlinear vibration absorber. Arch. Appl. Mech. 69, 585–620 (1999)

    Article  MATH  Google Scholar 

  10. Den Hartog, J.P.: Mechanical vibrations. McGraw Hill, New York (1956)

    MATH  Google Scholar 

  11. Banarjee, B., Bajaj, A.K., Davies, P.: Resonant dynamics of a chain of identical linear oscillators coupled to a nonlinear oscillator. Nonlinear Dyn. Controls, ASME, AMD 91, 231–237 (1996)

    Google Scholar 

  12. Vyas, A., Bajaj, A.K.: Dynamics of autoparametric vibration absorbers using multiple pendulums. J. Sound Vibrat. 246, 115–135 (2001)

    Article  MathSciNet  Google Scholar 

  13. Lee, W.K., Hsu, C.S.: A global analysis of a harmonically excited spring—pendulum system with internal resonance. J. Sound Vibrat. 171, 335–359 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hsu, C.S.: Cell-to-cell mappings. Springer, New York (1987)

    Google Scholar 

  15. Moon, F.C.: Chaotic and Fractal Dynamics: An Introduction for Scientists and Engineers. Wiley, New York (1992)

    Google Scholar 

  16. Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10, 99–108 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haller, G.: Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D 149, 248–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Haller, G.: Lagrangian coherent structures from approximate velocity data. Phys. Fluids A 14, 1851–1861 (2002)

    Article  MathSciNet  Google Scholar 

  19. Savran, C.A.: A comparative study of the dynamic and pendulum absorbers. BSME Honors thesis, Purdue University, West Lafayette, IN (1998)

  20. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)

    MATH  Google Scholar 

  21. Tondl, A., Ruijgorg, T., Verhulst, F., Nabergoj, R.: Autoparametric Resonance in Mechanical Systems. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Bajaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rifai, K.E., Haller, G. & Bajaj, A.K. Global dynamics of an autoparametric spring–mass–pendulum system. Nonlinear Dyn 49, 105–116 (2007). https://doi.org/10.1007/s11071-006-9116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-006-9116-y

Keywords

Navigation