Skip to main content
Log in

On the possible emergence of nonstatic quantum waves in a static environment

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A noticeable research topic in optics is optical phenomena associated with the nonstatic waves. If the parameters of a medium vary by a periodic or randomly exerted perturbation, the waves become nonstatic, leading to a variation in their shapes. The decay of wave amplitudes through dissipation is also an outcome of wave nonstaticity. In this research, we demonstrate that Schrödinger equation allows nonstatic quantum waves even in the situation where the waves neither suffer perturbation nor undergo dissipation. The time behavior of nonstatic waves in such a static environment is investigated in detail in the Fock state at first. And then, we extend our development for such a peculiar wave characteristic to the case of a Gaussian wave evolution which resembles the behavior of classical states. It is shown how to define a quantitative nonstaticity measure which can be used universally beyond the Fock-state nonstatic waves. Understanding the characteristics of nonstatic-wave phenomena may not only provide deeper insight into the essence of nature, but is helpful for practical applications of the wave nonstaticity in science and technology of electromagnetic wave modulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walther, H., Varcoe, B.T.H., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Prog. Phys. 69(5), 1325–1382 (2006). https://doi.org/10.1088/0034-4885/69/5/R02

    Article  Google Scholar 

  2. Josephson, B.D.: Possible new effects in superconductive tunnelling. Phys. Lett. 1(7), 251–253 (1962). https://doi.org/10.1016/0031-9163(62)91369-0

    Article  MATH  Google Scholar 

  3. Habibi, M., Ghamari, F.: Investigation of non-stationary self-focusing of intense laser pulse in cold quantum plasma using ramp density profile. Phys. Plasm. 19(1), 113109 (2012). https://doi.org/10.1063/1.4768221

    Article  Google Scholar 

  4. Savage Jr., R.L., Joshi, C., Mori, W.B.: Frequency upconversion of electromagnetic radiation upon transmission into an ionization front. Phys. Rev. Lett. 68(7), 946–949 (1992). https://doi.org/10.1103/PhysRevLett.68.946

    Article  Google Scholar 

  5. Shvartsburg, A., Petite, G.: Instantaneous optics of ultrashort broadband pulses and rapidly varying media. Prog. Opt. 44, 143–214 (2002). https://doi.org/10.1016/S0079-6638(02)80016-6

    Article  Google Scholar 

  6. Shah, S.M., Samar, R., Raja, M.A.Z.: Fractional-order algorithms for tracking Rayleigh fading channels. Nonlinear Dyn. 92(3), 1243–1259 (2018). https://doi.org/10.1007/s11071-018-4122-4

    Article  Google Scholar 

  7. Akhmanov, S.A., Sukhorukov, A.P., Chirkin, A.S.: Nonstationary phenomena and space–time analogy in nonlinear optics. Soviet Phys. JETP 28(4), 748–757 (1969)

    Google Scholar 

  8. Bitouk, D.R., Fedorov, M.V.: Non-stationary scattering of wave-packets. Opt. Express 2(10), 404–410 (1998). https://doi.org/10.1364/OE.2.000404

    Article  Google Scholar 

  9. Wu, J.: Riemann–Hilbert approach of the Newell-type long-wave-short-wave equation via the temporal-part spectral analysis. Nonlinear Dyn. 98(1), 749–760 (2019). https://doi.org/10.1007/s11071-019-05226-9

    Article  MATH  Google Scholar 

  10. Angelow, A.K., Trifonov, D.A.: Dynamical invariants and Robertson–Schrödinger correlated states of electromagnetic field in nonstationary linear media. AIP Conf. Proc. 1340(1), 221–233 (2011). https://doi.org/10.1063/1.3582752

  11. Zhaqilao, Z.: Nonlinear dynamics of higher-order rogue waves in a novel complex nonlinear wave equation. Nonlinear Dyn. 99(4), 2945–2960 (2020). https://doi.org/10.1007/s11071-019-05458-9

    Article  Google Scholar 

  12. Vozianova, A., Yeliseyev, S., Nerukh, A.: Focusing of pulses by plane boundary of nonstationary medium. In: Proceedings of the 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, pp. 266–268 (2006). https://doi.org/10.1109/UWBUS.2006.307225

  13. Shvartsburg, A.B.: Optics of nonstationary media. Phys. Usp. 48(8), 797–824 (2005). https://doi.org/10.1070/PU2005v048n08ABEH002119

    Article  Google Scholar 

  14. Ankiewicz, A., Akhmediev, N.: Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions. Nonlinear Dyn. 91(3), 1931–1938 (2018). https://doi.org/10.1007/s11071-017-3991-2

    Article  Google Scholar 

  15. Dodonov, A.V.: Photon creation from vacuum and interactions engineering in nonstationary circuit QED. J. Phys. Conf. Ser. 161(1), 012029 (2009). https://doi.org/10.1088/1742-6596/161/1/012029

    Article  MathSciNet  Google Scholar 

  16. Yang, L., Cai, K., Shi, J., Xie, Y.M., Qin, Q.-H.: Nonlinear dynamic behavior of a clamped–clamped beam from BNC nanotube impacted by fullerene. Nonlinear Dyn. 96(2), 1133–1145 (2019). https://doi.org/10.1007/s11071-019-04845-6

    Article  Google Scholar 

  17. Trofimov, V.A., Lysak, T.M., Loginova, M.M.: Laser pulse self-similar propagation in a medium with noble metal nanoparticles under conditions of non-stationary processes. In: Proceedings of SPIE 10730, Nanoengineering: Fabrication, Properties, Optics, and Devices XV, 1073014 (2018). https://doi.org/10.1117/12.2322617

  18. Nerukh, A., Benson, T.: Non-stationary Electromagnetics: An Integral Equations Approach, 2nd edn. Pan Stanford Publishing Pte. Ltd., Singapore (2019)

    MATH  Google Scholar 

  19. Mendonça, J.T.: Theory of Photon Acceleration. CRC Press, Bristol (2000)

    Book  Google Scholar 

  20. Mendonça, J.T., Oliveira e Silva, L.: Regular and stochastic acceleration of photons. Phys. Rev. E 49(4), 3520–3523 (1994). https://doi.org/10.1103/PhysRevE.49.3520

    Article  Google Scholar 

  21. Wilks, S.C., Dawson, J.M., Mori, W.B., Katsouleas, T., Jones, M.E.: Photon accelerator. Phys. Rev. Lett. 62(22), 2600–2603 (1989). https://doi.org/10.1103/PhysRevLett.62.2600

    Article  Google Scholar 

  22. Medjber, S., Bekkar, H., Menouar, S., Choi, J.R.: Quantization of a 3D nonstationary harmonic plus an inverse harmonic potential system. Adv. Math. Phys. 2016, 3693572 (2016). https://doi.org/10.1155/2016/3693572

    Article  MathSciNet  MATH  Google Scholar 

  23. Dodonov, V.V., Man’ko, V.I.: Loss energy states of nonstationary quantum systems. Nuovo Cimento B 44(2), 265–274 (1978). https://doi.org/10.1007/BF02726792

    Article  Google Scholar 

  24. Vorgul, I.: On Maxwell’s equations in non-stationary media. Phil. Trans. R. Soc. A 366(1871), 1781–1788 (2008). https://doi.org/10.1098/rsta.2007.2186

    Article  MathSciNet  MATH  Google Scholar 

  25. Wei, L., Wang, Y.: Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model. Phys. Rev. B 75(19), 193407 (2007). https://doi.org/10.1103/PhysRevB.75.193407

    Article  Google Scholar 

  26. Shukla, P.K., Ali, S., Stenflo, L., Marklund, M.: Nonlinear wave interactions in quantum magnetoplasmas. Phys. Plasm. 13(11), 112111 (2006). https://doi.org/10.1063/1.2390688

    Article  Google Scholar 

  27. Hiley, J.: Non-commutative quantum geometry: a reappraisal of the Bohm approach to quantum theory. In: Elitzur, A.C., Dolev, S., Kolenda, N. (eds.) Quo Vadis Quantum Mechanics? The Frontiers Collection. Springer, Berlin (2005). https://doi.org/10.1007/3-540-26669-0_16

  28. Kong, O.C.W.: A geometric picture of quantum mechanics with noncommutative values for observables. Results Phys. 19, 103636 (2020). https://doi.org/10.1016/j.rinp.2020.103636

  29. Choi, J.R., Yeon, K.H., Nahm, I.H., Kim, S.S.: Do the generalized Fock-state wave functions have some relations with classical initial condition? Pramana J. Phys. 73(5), 821–828 (2009). https://doi.org/10.1007/s12043-009-0150-4

    Article  Google Scholar 

  30. Trueba, J.L.: Electromagnetic knots and the magnetic flux in superconductors. Ann.Fond. Louis Broglie 33(1–2), 183–192 (2008)

  31. Robinett, R.W., Bassett, L.C.: Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy. Found. Phys. Lett. 17(7), 607–625 (2004). https://doi.org/10.1007/s10702-004-1117-9

    Article  MATH  Google Scholar 

  32. Robinett, R.W., Bassett, L.C.: Analytic results for Gaussian wave packets in four model systems: II. Autocorrelation functions. Found. Phys. Lett. 17(7), 645–661 (2004). https://doi.org/10.1007/s10702-004-1119-7

    Article  MATH  Google Scholar 

  33. Schiff, L.I.: Quantum Mechanics, 3rd edn, pp. 74–76. McGraw-Hill, New York (1968)

    Google Scholar 

  34. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals and Products, 8th edn, p. 811. Elsevier, Amsterdam (2015)

    Google Scholar 

  35. Erdély, A.: Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2016R1D1A1A09919503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Ryeol Choi.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Evaluation of the Gaussian wave function

In order to depict the probability density associated with the Gaussian wave function given in Eq. (8), it is necessary to derive its analytical expression. For this purpose, we first evaluate \(c_n\) using the basic relation which is

$$\begin{aligned} c_n = \int _{-\infty }^{\infty } \langle \psi _n (0)|q \rangle \langle q |\psi (0)\rangle {\text {d}}q. \end{aligned}$$
(A1)

A minor calculation after inserting the initial wave functions \(\langle q |\psi _n(0) \rangle \) and Eq. (7) into the above equation leads to

$$\begin{aligned} c_n= & {} [ {W_\mathrm{R}(0)K_\mathrm{R}} ]^{1/4}\frac{\sqrt{2}}{\sqrt{2^n n!}} \frac{[K-W(0)]^{n/2}}{[K+W^*(0)]^{(n+1)/2}}\nonumber \\&\quad \times \exp \bigg ( \frac{K^2 \xi ^2}{2[W^*(0)+K]}\bigg ) \nonumber \\&\quad \times H_n \Bigg ( \frac{\sqrt{W_\mathrm{R}(0)}K \xi }{\{[K-W(0)][K+W^*(0)]\}^{1/2}} \Bigg ) e^{-i\gamma _n (0)}e^{-\frac{1}{2}K\xi ^2}. \nonumber \\ \end{aligned}$$
(A2)

Here, we have used the integral formula of the form [34]

$$\begin{aligned}&\int _{-\infty }^\infty e^{-(x-y)^2} H_n (\alpha x) {\text {d}}x \nonumber \\&\quad = \pi ^{1/2}(1-\alpha ^2)^{n/2} H_n \bigg ( \frac{\alpha y}{(1-\alpha ^2)^{1/2}} \bigg ). \end{aligned}$$
(A3)

Now, from the substitution of Eq. (A2) into Eq. (8) in the text, we have

$$\begin{aligned} \langle q |\psi (t) \rangle= & {} \bigg ( \frac{W_\mathrm{R}(0)W_\mathrm{R}(t)}{\pi } \bigg )^{1/4}\bigg ( \frac{2K_\mathrm{R}^{1/2}}{ g(t)\exp [-2i\Theta (t) ]} \bigg )^{1/2}\nonumber \\&\quad \times \exp \bigg [-\frac{1}{2}\Big (K \xi ^2 +i\Theta (t) \Big ) \bigg ] \nonumber \\&\quad \times \exp \bigg [ \frac{K^2 \xi ^2}{K+W^*(0)} \bigg ( \frac{1}{2} - \frac{W_\mathrm{R}(0)}{g(t)} \bigg ) \bigg ]\nonumber \\&\quad \times \exp \Bigg [ - \frac{\mathcal {W}(t)}{2}q^2 + R(t) q \Bigg ], \end{aligned}$$
(A4)

where \(\Theta (t) = \omega \int _0^t f^{-1}(t'){\text {d}}t'\), and

$$\begin{aligned} {{\mathcal {W}}}(t)= & {} W(t)+ \frac{2W_\mathrm{R}(t)[K-W(0)]}{g(t)}, \end{aligned}$$
(A5)
$$\begin{aligned} g(t)= & {} [K+W^*(0)] \exp [2i\Theta (t) ]-[K-W(0)], \nonumber \\ \end{aligned}$$
(A6)
$$\begin{aligned} R(t)= & {} \frac{2K \xi \sqrt{W_\mathrm{R}(0)W_\mathrm{R}(t)} }{g(t) \exp [-i\Theta (t)]}. \end{aligned}$$
(A7)

In the derivation of Eq. (A4), Mehler’s formula [35] has been used:

$$\begin{aligned} \sum _{n=0}^{\infty } \frac{(z/2)^n}{n!} H_n (x) H_n (y)= & {} \frac{1}{(1-z^2)^{1/2}}\nonumber \\&\quad \times \exp \left[ \frac{2xyz-(x^2+y^2)z^2}{1-z^2}\right] . \nonumber \\ \end{aligned}$$
(A8)

If we confine the range of \(\varphi \) within \(-\pi /2 \le \varphi < \pi /2\) for convenience, \(\Theta (t)\) can be evaluated, leading for \(t\ge 0\) to

$$\begin{aligned} \Theta (t) = \tan ^{-1} Z(t) - \tan ^{-1} Z(0)+{{\mathcal {G}}}(t), \end{aligned}$$
(A9)

where

$$\begin{aligned} Z(t)= & {} C+A\tan (\omega t +\varphi ), \end{aligned}$$
(A10)
$$\begin{aligned} {{\mathcal {G}}}(t)= & {} \pi \sum _{m=0}^{\infty }u[t-(2m+1)\pi /(2\omega )+\varphi /\omega ]. \end{aligned}$$
(A11)

In Eq. (A11), u[t] is the step function (the Heaviside step function).

We can also have the probability density associated with the wave function given in Eq. (A4) from a straightforward evaluation as

$$\begin{aligned} |\langle q |\psi (t) \rangle |^2= & {} \sqrt{\frac{W_\mathrm{R}(0)W_\mathrm{R}(t)}{\pi }} \frac{2K_\mathrm{R}^{1/2}}{\sqrt{G(t)}}\nonumber \\&\quad \times \exp \{-X(t)[q-\eta (t)]^2\}, \end{aligned}$$
(A12)

where

$$\begin{aligned} X(t)= & {} W_\mathrm{R}(t) [1-Z(t)/G(t)], \end{aligned}$$
(A13)
$$\begin{aligned} Z(t)= & {} g(t)[W^*(0)-K^*]+g^*(t)[W(0)-K], \nonumber \\ \end{aligned}$$
(A14)
$$\begin{aligned} G(t)= & {} g(t)g^*(t), \end{aligned}$$
(A15)
$$\begin{aligned} \eta (t)= & {} \frac{\xi }{\sqrt{W_\mathrm{R}(0)W_\mathrm{R}(t)}} \{W_\mathrm{R}(0) \cos [\Theta (t)] \nonumber \\&+W_\mathrm{I}(0)\sin [\Theta (t)]\}. \end{aligned}$$
(A16)

Equation (A12) with Eqs. (A13)–(A16) has been used in the plot of Fig. 5 in the text.

Appendix B: Evaluation of the measure of nonstaticity for the Gaussian wave

For the Gaussian wave, the measure of nonstaticity is determined from \({{\mathcal {W}}}\). Let us divide \({{\mathcal {W}}}\) as the real and imaginary parts, such that

$$\begin{aligned} {{\mathcal {W}}} = {{\mathcal {W}}}_\mathrm{R} +i {{\mathcal {W}}}_\mathrm{I}. \end{aligned}$$
(B1)

A straightforward evaluation using Eq. (A5) gives

$$\begin{aligned} {{\mathcal {W}}}_\mathrm{R}= & {} \frac{4}{G(t)}K_\mathrm{R} W_\mathrm{R}(0)W_\mathrm{R}(t), \end{aligned}$$
(B2)
$$\begin{aligned} {{\mathcal {W}}}_\mathrm{I}= & {} \frac{2}{G(t)} [\mu (t) W_\mathrm{R}(t) + \nu (t) W_\mathrm{I}(t) ], \end{aligned}$$
(B3)

where

$$\begin{aligned} \mu (t)= & {} [W_\mathrm{R}^2(0)-W_\mathrm{I}^2(0) + 2W_\mathrm{I}(0)K_\mathrm{I} -K_\mathrm{R}^2 -K_\mathrm{I}^2]\nonumber \\&\quad \times \sin [2\Theta (t)]+2W_\mathrm{R}(0)[K_\mathrm{I}-W_\mathrm{I}(0)]\cos [2\Theta (t)], \nonumber \\ \end{aligned}$$
(B4)
$$\begin{aligned} \nu (t)= & {} 2\{ \{W_\mathrm{R}(0) \cos [\Theta (t)] + W_\mathrm{I}(0)\sin [\Theta (t)] \}^2 \nonumber \\&\quad +\,(K_\mathrm{R}^2 + K_\mathrm{I}^2)\sin ^2[\Theta (t)] -2K_\mathrm{I} \{W_\mathrm{R}(0) \cos [\Theta (t)] \nonumber \\&\quad +\,W_\mathrm{I}(0) \sin [\Theta (t)]\}\sin [\Theta (t)] \}. \end{aligned}$$
(B5)

From these expressions, we easily have \( {{{\mathcal {W}}}_\mathrm{I}}/{{{\mathcal {W}}}_\mathrm{R}} \) given in Eq. (9) in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.R. On the possible emergence of nonstatic quantum waves in a static environment. Nonlinear Dyn 103, 2783–2792 (2021). https://doi.org/10.1007/s11071-021-06222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06222-8

Keywords

Navigation