Skip to main content
Log in

Analytic Results for Gaussian Wave Packets in Four Model Systems: I. Visualization of the Kinetic Energy

  • Published:
Foundations of Physics Letters

Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrödinger equation corresponding to the cases of a free particle, a particle under-going uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to all unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90° of the kinetic energy can be localized (at least conceptually) in the ‘front half’ of such Gaussian wave packets, and we visualize these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. E. Schrödinger, “Der stetige Übergang von der Mikro- zur Makromechanik,” Naturwiss. 14, 664–666 (1926); translated and reprinted as “The continuous transition from micro- to macro mechanics,” in Collected Papers on Wave Mechanics (Chelsea, New York, 1982), pp 41–44.

    Google Scholar 

  2. 2. E. H. Kennard, “The quantum mechanics of an electron or other particle,” J. Franklin Institute 207, 47–78 (1929); see also “Zur quantenmechanik cinfacher Bewegungstypen,” Z. Phys. 44, 326–352 (1927).

    Google Scholar 

  3. 3. C. G. Darwin, “Free motion in the wave mechanics,” Proc. Roy. Soc (London) A117, 258–293 (1928).

    Google Scholar 

  4. 4. L. de Broglie, Einfuhrung in die Wellenmechanik (Akademie, Leipzig, 1929).

    Google Scholar 

  5. 5. E. C. Kemble, The Fundamental Principles of Quantum Mechanics with Elementary Applications (McGraw-Hill, New York, 1937), pp. 35–41.

    Google Scholar 

  6. 6. S. Dushman, The Elements of Quantum Mechanics (Wiley, New York, 1938), pp. 405–407.

    Google Scholar 

  7. 7. V. Rojansky, Introductory Quantum Mechanics (Prentice Hall, New York, 1938), pp. 69–70.

    Google Scholar 

  8. 8. J. R. Hiller, I. D. Johnston, and D. F. Styer, Quantum Mechanics Simulations: The Consortium for Upper-Level Physics Software (Wiley, New York, 1995).

    Google Scholar 

  9. 9. B. Thaller, Visual Quantum Mechanics: Selected Topics with Computer-Generated Animations of Quantum-Mechanical Phenomena (Springer, New York, 2000).

    Google Scholar 

  10. 10. M. Belloni and W. Christian, “Physlets for quantum mechanics,” Comp. Sci. Eng. 5, 90–97 (2003).

    Google Scholar 

  11. 11. R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics,” Rev. Mod. Phys. 20, 367–387 (1948).

    Article  Google Scholar 

  12. 12. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  13. 13. D. S. Saxon, Elementary Quantum Mechanics (McGraw-Hill, New York, 1968), pp. 144–147.

    Google Scholar 

  14. 14. P. Nardone, “Heisenberg picture in quantum mechanics and linear evolutionary systems,” Am. J. Phys. 61, 232–237 (1993).

    Google Scholar 

  15. 15. S. M. Cohen, “Path integral for the quantum harmonic oscillator using elementary methods,” Am. J. Phys. 66, 537–540 (1998).

    Google Scholar 

  16. 16. B. R. Holstein, “The harmonic oscillator propagator,” Am. J. Phys. 66, 583–589 (1998).

    Google Scholar 

  17. 17. K. Gottfried, Quantum Mechanics: Volume I Fundamentals (Benjamin, New York, 1966), pp. 260–264.

    Google Scholar 

  18. 18. D. F. Styer, “The motion of wave packets through their expectation values and uncertainties,” Am. J. Phys. 58, 742–744 (1990).

    Google Scholar 

  19. 19. A. S. de Castro and N. C. da Cruz, “A pulsating Gaussian wave packet,” Eur. J. Phys. 20, L19–L20 (1999).

    Google Scholar 

  20. 20. W. Waldenström and Razi K. Naqvi, “A neglected aspect of the pulsating Gaussian wave packet,” Eur. J. Phys. 20, L41–L43 (1999).

    Google Scholar 

  21. 21. L. I. Schiffer, Quantum Mechanics (1st edn.) (McGraw Hill, New York, 1949), pp. 67–69.

    Google Scholar 

  22. 22. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951), pp. 306–309.

    Google Scholar 

  23. 23. P. Fong, Elementary Quantum Mechanics (Addison-Wesley, Reading, 1962), pp. 88–91.

    Google Scholar 

  24. 24. A. Messiah, Quantum Mechanics: Volume I (North-Holland, Amsterdam, 1961), pp. 446–447.

    Google Scholar 

  25. 25. D. ter Haar, Selected Problems in Quantum Mechanics (Academic, New York, 1964), pp. 14, 143–145.

    Google Scholar 

  26. 26. C. Cohen-Tannoudji, B. Diu, and F. Laloê, Quantum Mechanics, Volume I (Wiley, New York, 1977), pp. 572–573.

    Google Scholar 

  27. 27. S. Howard and S. K. Roy, “Minimum uncertainty states and their time evolution,” Am. J. Phys. 53, 538–542 (1985).

    Google Scholar 

  28. 28. R. W. Robinett, Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples (Oxford University Press, New York, 1997), pp. 208–209, 213–214.

    Google Scholar 

  29. 29. M. H. Bramhall and B. M. Casper, “Reflections on a wave packet approach to quantum mechanical barrier penetration,” Am. J. Phys. 38, 1136–1145 (1970).

    Google Scholar 

  30. 30. M. A. Doncheski and R. W. Robinett, “Anatomy of a ‘quantum bounce’,” Eur. J. Phys. 20, 29-37 (1999).

    Google Scholar 

  31. 31. L. de la Torre and F. Gori, “The bouncing bob: quasi-classical states,” Eur. J. Phys. 24, 253–259 (2003).

    Google Scholar 

  32. 32. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749-759 (1932).

    Article  Google Scholar 

  33. 33. V. I. Tatarskii, “The Wigner representation of quantum mechanics,” Sov. Phys. Usp. 26 311-327 (1983).

    Google Scholar 

  34. 34. N. L. Balaczs and B. K. Jennings, “Wigner’s function and other distribution functions in mock phase space,” Phys. Rep. 105, 347–391 (1984).

    Google Scholar 

  35. 35. P. Carruthers and F. Zachariasen, “Quantum collision theory with phase-space distributions,” Rev. Mod. Phys. 55, 245–285 (1983).

    Google Scholar 

  36. 36. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: Fundamentals,” Phys. Rep. 106, 121–167 (1984).

    Article  MathSciNet  Google Scholar 

  37. 37. J. Bertrand and P. Bertrand, “A tomographic approach to Wigner’s function,” Found. Phys. 17, 397–405 (1987).

    Google Scholar 

  38. 38. Y. S. Kim and E. P. Wigner, “Canonical transformations in quantum mechanics,” Am. J. Phys. 58, 439–448 (1990).

    Google Scholar 

  39. 39. Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics: Group Theoretical Approach (Lecture Notes in Physics Series, Vol. 40) (World Scientific, Singapore, 1990).

    Google Scholar 

  40. 40. H.-W. Lee, “Theory and application of the quantum phase-space distribution functions,” Phys. Rep. 259, 147–211 (1995).

    Google Scholar 

  41. 41. A. M. Ozorio de Almeida, “The Weyl representation in classical and quantum mechanics,” Phys. Rep. 296, 265–342 (1998).

    Google Scholar 

  42. 42. M. Belloni, M. Doncheski, and R. W. Robinett, “Wigner quasiprobability distribution for the infinite square well: energy eigenstates and time-dependent wave packets,” to appear in Am. J. Phys.; e-print arXiv: quant-ph/0312086.

    Google Scholar 

  43. 43. R. W. Robinett and L. C. Bassett, “Analytic results for Gaussian wave packets in four model systems: II. Autocorrelation functions,” to appear in Found. Phys. Lett.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinett, R., Bassett, L. Analytic Results for Gaussian Wave Packets in Four Model Systems: I. Visualization of the Kinetic Energy. Found Phys Lett 17, 607–625 (2004). https://doi.org/10.1007/s10702-004-1117-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-004-1117-9

Key words:

Navigation