Skip to main content
Log in

Nonlinear dynamics of higher-order rogue waves in a novel complex nonlinear wave equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel complex nonlinear wave equation was recently found by Mukherjee and Kundu (Phys. Lett. A 383:985–990, 2019) and shown that it possesses the first-order rogue waves and accelerated one-soliton solutions. In this paper, higher-order rogue wave solutions with multi-parameters of the novel complex nonlinear wave equation are derived by a symbolic computation approach. Nonlinear dynamics of the first- and second-order rogue wave solutions, localized in space–time and richer due to the presence of free parameters, are investigated in detail. In particular, a complete classification of the first-order rogue wave is given by the free parameters. With the help of the contour line method, some localization characters of the first-order rogue wave solution are analyzed. Moreover, the novel equation also allows some periodic wave and accelerated periodic wave solutions expressed by Jacobi elliptical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Google Scholar 

  3. Osborne, A.R.: Nonlinear Ocean Waves. Academic Press, New York (2009)

    Google Scholar 

  4. Kibler, B., Kibler, B., Fatome, J., Finot, C., et al.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Google Scholar 

  5. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Google Scholar 

  6. Moslem, W.M., Shukla, P.K., Eliasson, B.: Surface plasma rogue waves. EPL 96, 25002 (2011)

    Google Scholar 

  7. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Google Scholar 

  8. Zhao, L.C.: Dynamics of nonautonomous rogue waves in Bose–Einstein condensate. Ann. Phys. 329, 73–79 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947–949 (2010)

    MATH  Google Scholar 

  10. Sharma, S.K., Bailung, H.: Observation of hole Peregrine soliton in a multicomponent plasma with critical density of negative ions. J. Geophys. Res. Space Phys. 118, 919–924 (2013)

    Google Scholar 

  11. Kharif, C., Pelinovsky, E., Slunyaev, A.: Advances in Goephysical and Enviromental Mechnics and Mathematics. Springer, Berlin (2009)

    Google Scholar 

  12. Saucier, F.J., Chasse, J.: Tidal circulation and buoyancy effects in the St. Lawrence Estuary. Atmos. Ocean 38, 505–556 (2000)

    Google Scholar 

  13. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambrige (2004)

    MATH  Google Scholar 

  14. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Science and Technology Publishing House, Shanghai (2005)

    Google Scholar 

  15. Xu, S.W., He, J.S., Wang, L.H.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A Math. Theor. 44, 305203 (2011)

    MATH  Google Scholar 

  16. Zhaqilao, : \(N\text{ th }\)-order rogue wave solutions of the complex modified Korteweg–de Vries equation. Phys. Scr. 87, 065401 (2013)

    Google Scholar 

  17. Zhaqilao, : On \(N\text{ th }\)-order rogue wave solution to the generalized nonlinear Schrödinger equation. Phys. Lett. A 377, 855–859 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, Y., Nie, X.J., Zhaqilao, : Rogue wave solutions for the coupled cubic–quintic nonlinear Schrödinger equations in nonlinear optics. Phys. Lett. A 378, 191–197 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  20. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    MathSciNet  Google Scholar 

  21. Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Google Scholar 

  22. Geng, X.G., Liu, H., Zhu, J.Y.: Initial-boundary value problems foe the coupled nonlinear Schrödinger equation on the half-line. Stud. Appl. Math. 135, 310–346 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Geng, X.G., Wu, J.P.: Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa–Satsuma equation. Wave Motion 60, 62–72 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Wang, D.S., Yin, Y.B.: Symmetry analysis and reduction of the two-dimensional generalized Benney system via geometric approach. Comput. Math. Appl. 71, 748–757 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Wazwaz, A.M.: Abundant solutions of various physical features for the (2 + 1)-dimensional modified KdV–Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)

    MathSciNet  Google Scholar 

  27. Wang, M.L., Zhou, Y.B., Li, Z.B.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    MATH  Google Scholar 

  28. Sirendaoreji, Sun J.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309, 387–396 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Wang, M.L., Zhou, Y.B.: The periodic wave solutions for the Klein–Gorden–Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Wang, M.L., Li, X.Z.: Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. A 343, 48–54 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Wang, M.L., Li, X.Z., Zhang, J.L.: The \(G^\prime /G\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    MathSciNet  Google Scholar 

  32. Wang, M.L., Zhang, J.L., Li, X.Z.: Application of the \(G^\prime /G\)-expansion to travelling wave solutions of the Broer–Kaup and the approximate long wave equations. Appl. Math. Comput. 206, 321–326 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Zhaqilao, : A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems. Comput. Math. Appl. 75, 3331–3342 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Bai, S., Zhaqilao, : Smooth soliton and kink solutions for a new integrable soliton equation. Nonlinear Dyn. 87, 377–382 (2017)

    MATH  Google Scholar 

  36. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Beijing (2009)

    MATH  Google Scholar 

  37. Mukherjee, A., Kundu, A.: Novel nonlinear wave equation: regulated rogue waves and accelerated soliton solutions. Phys. Lett. A 383, 985–990 (2019)

    Google Scholar 

  38. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M., Dudley, John M.: Rogue wave early warning through spectral measurements? Phys. Lett. A 375, 541–544 (2011)

    MATH  Google Scholar 

  39. Nikolkina, I., Didenkulova, I.: Rogue waves in 2006–2010. Nat. Hazards Earth Syst. Sci. 11, 2913–2924 (2011)

    Google Scholar 

  40. He, J.S., Wang, L.H., Li, L.J., Porsezian, K., Erdélyi, R.: Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)

    Google Scholar 

  41. Yuan, F., Qiu, D.Q., Liu, W., Porsezian, K., He, J.S.: On the evolution of a rogue wave along the orthogonal direction of the \((t, x)\)-plane. Commun. Nonlinear Sci. Numer. Simul. 44, 245–257 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate the anonymous reviewers for their helpful and constructive suggestions, which can help improve this paper further. This work is supported by the National Natural Science Foundation of China (under Grant Nos. 11861050, 11261037) and Caoyuan Yingcai Program of Inner Mongolia Autonomous Region (under Grant No. CYYC2011050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaqilao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhaqilao Nonlinear dynamics of higher-order rogue waves in a novel complex nonlinear wave equation. Nonlinear Dyn 99, 2945–2960 (2020). https://doi.org/10.1007/s11071-019-05458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05458-9

Keywords

Navigation