Skip to main content
Log in

Rogue wave and multi-pole solutions for the focusing Kundu–Eckhaus Equation with nonzero background via Riemann–Hilbert problem method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we use the inverse scattering transform method to consider the focusing Kundu–Eckhaus (KE) equation with nonzero background (NZBG) at infinity. Based on the analytical, symmetric, asymptotic properties of eigenfunctions, the inverse problem is solved via a matrix Riemann–Hilbert problem (RHP). The general multi-pole solutions are given in terms of the solution of the associated RHP. And the formula of the N simple-pole soliton solutions are obtained, too. We show that the Peregrine’s rational solution can be viewed as some appropriate limit of the simple-pole soliton solutions at branch point. Furthermore, by taking some other proper limits, the two and three simple-pole soliton solutions can yield to the double- and triple-pole solutions for focusing KE equation with NZBG. The effect of the parameter \(\beta \), characterizing the strength of the non-Kerr (quintic) nonlinear and the self-frequency shift effect, and some typical collisions between solutions of focusing KE equation are graphically displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  2. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Plenum, New York (1984)

    MATH  Google Scholar 

  3. Newell, A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)

    Book  MATH  Google Scholar 

  4. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  5. Xie, X.Y., Tian, B., Chai, J., Wu, X.Y., Jiang, Y.: Dark soliton collisions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or alpha helical protein. Nonlinear Dyn. 86, 131–135 (2016)

    Article  Google Scholar 

  6. Talati, D., Wazwaz, A.M.: Some new integrable systems of two-component fifth-order equations. Nonlinear Dyn. 87, 1111–1120 (2017a)

    Article  MathSciNet  MATH  Google Scholar 

  7. Talati, D., Wazwaz, A.M.: Some classification of noncommutative integrable systems. Nonlinear Dyn. 88, 1487–1492 (2017b)

    Article  Google Scholar 

  8. Wazwaz, A.M.: A reliable technique for solving linear and nonlinear Schrödinger equations by Adomian decomposition method. Bull. Inst. Math. Acad. Sin. 29, 34–125 (2001)

    MATH  Google Scholar 

  9. Wazwaz, A.M.: Reliable analysis for the nonlinear Schrödinger equations with a cubic and a power law nonlinearity. Math. Comput. Model. 43, 178–184 (2006)

    Article  MATH  Google Scholar 

  10. Wang, X., Yang, B., Chen, Y., Yang, Y.Q.: Higher-order rogue wave solutions of the Kundu–Eckhaus equation. Phys. Scr. 89, 095210 (2014)

    Article  Google Scholar 

  11. Wang, P., Feng, L., Shang, T., Guo, L.X., Cheng, G.H., Du, Y.J.: Analytical soliton solutions for the cubic–quintic nonlinear Schrödinger equation with Raman effect in the nonuniform management systems. Nonlinear Dyn. 79, 384–395 (2015)

    Article  Google Scholar 

  12. Kundu, A.: Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433 (1984)

    Article  MathSciNet  Google Scholar 

  13. Kodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)

    Article  MathSciNet  Google Scholar 

  14. Geng, X.G.: A hierarchy of nonlinear evolution-equations its hamiltonian-structure and classical integrable system. Phys. A 180, 241–251 (1992)

    Article  MathSciNet  Google Scholar 

  15. Geng, X.G., Tam, H.W.: Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations. J. Phys. Soc. Jpn. 68, 1508–1512 (1999)

    Article  MATH  Google Scholar 

  16. Clarkson, P.A., Cosgrove, C.M.: Painleve analysis of the nonlinear Schrodinger family of equations. J. Phys. A Math. Gen. 20, 2003 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaur, L., Wazwaz, A.M.: Painleve analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469–2477 (2018)

    Article  MATH  Google Scholar 

  18. Ma, W.X.: Darboux transformations for a Lax integrable system in 2n-dimensions. Lett. Math. Phys. 39, 33–49 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The Darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc A 471, 20150236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xie, X.Y., Tian, B., Sun, W.R., Sun, Y.: Rogue-wave solutions for the Kundu–Eckhaus equation with variable coefficients in an optical fiber. Nonlinear Dyn. 81, 1349–1354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)

    Article  MATH  Google Scholar 

  22. Zhu, Q.Z., Xu, J., Fan, E.G.: The Riemann–Hilbert problem and long-time asymptotics for the Kundu–Eckhaus equation with decaying initial value. Appl. Math. Lett. 76, 81–89 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, D.S., Wang, X.L.: Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach. Nonlinear Anal. Real World Appl. 41, 334–361 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with non-zero boundary conditions. J. Diff. Equ. 266, 5209–5253 (2019)

    Article  MATH  Google Scholar 

  25. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  26. Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 51, 2029–2035 (1982)

    Article  MathSciNet  Google Scholar 

  27. Tsuru, H., Wadati, M.: The multiple pole solutions of the sine-Gordon equation. J. Phys. Soc. Jpn. 53, 2908–2921 (1984)

    Article  MathSciNet  Google Scholar 

  28. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E., Pitaevskii, L.P.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  29. Zahkarov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. Sov. Phys. JETP 37, 823–828 (1973)

    Google Scholar 

  30. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Satsuma, J., Yajima, N.: Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog. Theor. Phys. Suppl. 55, 284–306 (1974)

    Article  MathSciNet  Google Scholar 

  32. Gerdjikov, V.S., Kulish, P.P.: Completely integrable Hamiltonian systems, connected with the non-self-adjoint Dirac operator. Bulg. J. Phys. 10, 11394 (1978)

    Google Scholar 

  33. Tovbis, A., Venakides, S., Zhou, X.: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Comm. Pure. Appl. Math. 57, 877–985 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Biondini, G., Mantzavinos, D.: Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions at infinity and asymptotic stage of modulational instability. Comm. Pure Appl. Math. 70, 2300–2365 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Biondini, G., Li, S., Mantzavinos, D.: Soliton trapping, transmission, and wake in modulationally unstable media. Phys. Rev. E 98, 042211 (2018)

    Article  Google Scholar 

  36. Wazwaz, A.M.: Negative-order integrable modified KdV equations of higher orders. Nonlinear Dyn. 93, 1371–1376 (2018a)

    Article  MATH  Google Scholar 

  37. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018b)

    Article  Google Scholar 

  38. Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)

    Article  Google Scholar 

  39. Nikolić, S.N., Ashour, O.A., Aleksić, N.B., Belić, M.R., Chin, S.A.: Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dyn. 95, 2855–2865 (2019)

    Article  MATH  Google Scholar 

  40. Yang, C.Y., Zhou, Q., Triki, H., Mirzazadeh, M., Ekici, M., Liu, W.J., Biswas, A., Belic, M.: Bright soliton interactions in a (2 + 1)-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 95, 983–994 (2019)

    Article  MATH  Google Scholar 

  41. Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions. Stud. Appl. Math. 131, 1–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Biondini, G., Kovacic, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 031505 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pichler, M., Biondini, G.: On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles. IMA J. Appl. Math. 82, 131–151 (2017)

  44. Yang, B., Cheng, Y.: Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations. Nonlinear Dyn. 94, 489–502 (2018)

    Article  Google Scholar 

  45. Sun, B.N.: General soliton solutions to a nonlocal long-wave-short-wave resonance interaction equation with nonzero boundary condition. Nonlinear Dyn. 92, 1369–1377 (2018)

    Article  MATH  Google Scholar 

  46. Liu, W., Li, X.L.: General soliton solutions to a (2+1)-dimensional nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions. Nonlinear Dyn. 93, 721–731 (2018)

    Article  MATH  Google Scholar 

  47. Ortiz, A.K., Prinari, B.: Inverse scattering transform for the defocusing Ablowitz–Ladik system with arbitrarily large nonzero background. Stud. Appl. Math. 143, 373–403 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu, N., Guo, B.L.: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach. Nonlinear Dyn. 100, 629–646 (2020)

    Article  MATH  Google Scholar 

  49. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series, vol. 302. Cambridge University Press, Cambridge (2004)

  50. Ablowize, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. University Press, Cambridge (2003)

    Book  Google Scholar 

  51. Kuznetsov, E.A.: Solitons in a parametrically unstable plasma. Sov. Phys. Dokl. 22, 507–508 (1977)

    Google Scholar 

  52. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mussot, A., Louvergneaux, E., Akhmediev, E., Reynaud, F., Delage, L., Taki, M.: Optical fiber system are convectively unstable. Phys. Rev. Lett. 101, 113904 (2008)

    Article  Google Scholar 

  54. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983)

    Article  MATH  Google Scholar 

  55. Guo, N., Xu, J.: Inverse scattering transform for the Kundu–Eckhaus Equation with nonzero boundary condition. arXiv:1912.11424v2

  56. Matveev, V.B.: Positon–positon and soliton–positon collisions: KdV case. Phys. Lett. A 166, 209–212 (1992)

    Article  MathSciNet  Google Scholar 

  57. Andreev, V.A., Brezhnev, Y.V.: Darboux transformation, positons and general superposition formula for the sine-Gordon equation. Phys. Lett. A 207, 58–66 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. Xing, Q.X., Wu, Z.W., Mihalache, D., He, J.S.: Smooth positon solutions of the focusing modified Korteweg–de Vries equation. Commun. Nonlinear Dyn. 89, 2299–2310 (2017)

    Article  MathSciNet  Google Scholar 

  59. Song, W.J., Xu, S.W., Li, M.H., He, J.S.: Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation. Nonlinear Dyn. 97, 2135–2145 (2019)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Natural Science Foundation of China under Grant Nos. 11671065, 11971313, 51879045 and Shanghai natural science foundation under Project No. 19ZR1434500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, N., Xu, J., Wen, L. et al. Rogue wave and multi-pole solutions for the focusing Kundu–Eckhaus Equation with nonzero background via Riemann–Hilbert problem method. Nonlinear Dyn 103, 1851–1868 (2021). https://doi.org/10.1007/s11071-021-06205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06205-9

Keywords

Navigation