Skip to main content
Log in

Smooth positon solutions of the focusing modified Korteweg–de Vries equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The n-fold Darboux transformation \(T_{n}\) of the focusing real modified Korteweg–de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the n-soliton solutions of the mKdV equation are also expressed by determinants whose elements consist of the eigenvalues \(\lambda _{j}\) and the corresponding eigenfunctions of the associated Lax equation. The nonsingular n-positon solutions of the focusing mKdV equation are obtained in the special limit \(\lambda _{j}\rightarrow \lambda _{1}\), from the corresponding n-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the n-positon solution into n single-soliton solutions, the trajectories, and the corresponding “phase shifts” of the multi-positons are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Russell, J.S.: Report on Waves; Report of the Fourteenth Meeting of the British Association for the Advancement of Science. J. Murray, London (1844)

    Google Scholar 

  2. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gardner, C.S., Morikawa, G.K.: Similarity in the asymptotic behavior of collision-free hydro-magnetic waves and water waves. New York University, New York Institute of Mathematical Sciences, US. Technical Report Nos. TID-6184; MF-2 (1960)

  4. Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1996)

    Article  Google Scholar 

  5. Kruskal, M.D.: Asymptotology in Numerical Computation: Progress and Plans on the Fermi-Pasta-Ulam Problem. In: Proceedings of the IBM Scientific Computing Symposium on Large-Scale Problems in Physics (IBM Data Processing Division, White Plains, N.Y.), pp. 43–62 (1965)

  6. Zabusky, N.J.: A synergetic approach to problems of nonlinear dispersive wave propagation and interaction. In: Ames, W.F. (ed.) Nonlinear Partial Differential Equations: A Symposium on Methods of Solution, pp. 223–258. Academic Press, New York (1967)

    Google Scholar 

  7. Sjöberg, A.: On the Korteweg–de Vries equations: existence and uniqueness. J. Math. Anal. Appl. 29, 569–579 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Miura, R.M.: Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9, 1202–1204 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Miura, R.M.: The Korteweg–de Vries equation: a survey of results. SIAM Rev. 18, 412–459 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kivshar, Y.S., Malomed, B.A.: Solitons in a system of coupled Korteweg–de Vries equations. Wave Mot. 11, 261–269 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grimshaw, R., Malomed, B.A.: A new type of gap soliton in a coupled KdV-wave system. Phys. Rev. Lett. 72, 949–953 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grimshaw, R., Malomed, B.A., Tian, X.: Gap-soliton hunt in a coupled Korteweg–de Vries system. Phys. Lett. A 201, 285–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gottwald, G., Grimshaw, R., Malomed, B.: Parametric envelope solitons in coupled Korteweg–de Vries equations. Phys. Lett. A 227, 47–54 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Espinosa-Ceron, A., Malomed, B.A., Fujioka, J., Rodriguez, R.F.: Symmetry breaking in linearly coupled KdV systems. Chaos 22, 033145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leblond, H., Mihalache, D.: Few-optical-cycle solitons: modified Korteweg–de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)

    Article  Google Scholar 

  16. Leblond, H., Mihalache, D.: Few-optical-cycle dissipative solitons. J. Phys. A 43, 375205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Triki, H., Leblond, H., Mihalache, D.: Derivation of a modified Korteweg–de Vries model for few-optical-cycles soliton propagation from a general Hamiltonian. Opt. Commun. 285, 3179–3186 (2012)

    Article  Google Scholar 

  18. Leblond, H., Triki, H., Mihalache, D.: Theoretical studies of ultrashort-soliton propagation in nonlinear optical media from a general quantum model. Rom. Rep. Phys. 65, 925–942 (2013)

    Google Scholar 

  19. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frantzeskakis, D.J., Leblond, H., Mihalache, D.: Nonlinear optics of intense few-cycle pulses: an overview of recent theoretical and experimental developments. Rom. J. Phys. 59, 767–784 (2014)

    Google Scholar 

  21. Mihalache, D.: Localized structures in nonlinear optical media: a selection of recent studies. Rom. Rep. Phys. 67, 1383–1400 (2015)

    Google Scholar 

  22. Terniche, S., Leblond, H., Mihalache, D., Kellou, A.: Few-cycle optical solitons in linearly coupled waveguides. Phys. Rev. A 94, 063836 (2016)

    Article  Google Scholar 

  23. Leblond, H., Grelu, P., Mihalache, D.: Models for supercontinuum generation beyond the slowly-varying-envelope approximation. Phys. Rev. A 90, 053816 (2014)

    Article  Google Scholar 

  24. Leblond, H., Grelu, P., Mihalache, D., Triki, H.: Few-cycle solitons in supercontinuum generation. Eur. Phys. J. Spec. Top. 225, 2435–2451 (2016)

    Article  Google Scholar 

  25. Lonngren, K.E.: Ion acoustic soliton experiments in a plasma. Opt. Quantum Electron. 30, 615–630 (1998)

    Article  Google Scholar 

  26. Watanbe, S.: Ion acoustic soliton in plasma with negative ion. J. Phys. Soc. Jpn. 53, 950–956 (1984)

    Article  Google Scholar 

  27. Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos Solitons Fractals 13, 1917–1929 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ono, H.: Soliton fission in anharmonic lattices with reflectionless inhomogeneity. J. Phys. Soc. Jpn. 61, 4336–4343 (1992)

    Article  Google Scholar 

  29. Khater, A.H., El-Kalaawy, O.H., Callebaut, D.K.: Bäcklund transformations and exact solutions for Alfven solitons in a relativistic electron-positron plasma. Phys. Scr. 58, 545–548 (1998)

    Article  Google Scholar 

  30. El-Shamy, E.F.: Dust-ion-acoustic solitary waves in a hot magnetized dusty plasma with charge fluctuations. Chaos Solitons Fractals 25, 665–674 (2005)

    Article  MATH  Google Scholar 

  31. Ralph, E.A., Pratt, L.: Predicting eddy detachment for an equivalent barotropic thin jet. J. Nonlinear Sci. 4, 355–374 (1994)

    Article  MATH  Google Scholar 

  32. Komatsu, T.S., Sasa, S-i: Kink soliton characterizing traffic congestion. Phys. Rev. E 52, 5574–5582 (1995)

    Article  Google Scholar 

  33. Ge, H.X., Dai, S.Q., Xue, Y., Dong, L.Y.: Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system. Phys. Rev. E 71, 066119 (2005)

    Article  MathSciNet  Google Scholar 

  34. Ziegler, V., Dinkel, J., Setzer, C., Lonngren, K.E.: On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line. Chaos Solitons Fractals 12, 1719–1728 (2001)

    Article  MATH  Google Scholar 

  35. Wazwaz, A.M., Xu, G.Q.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86, 1455–1460 (2016)

    Article  Google Scholar 

  36. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3\(+\)1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)

    Article  MATH  Google Scholar 

  39. Yuan, F., Rao, J.G., Porsezian, K., Mihalache, D., He, J.S.: Various exact rational solutions of the two-dimensional Maccari’s system. Rom. J. Phys. 61, 378–399 (2016)

    Google Scholar 

  40. Triki, H., Leblond, H., Mihalache, D.: Soliton solutions of nonlinear diffusion–reaction-type equations with time-dependent coefficients accounting for long-range diffusion. Nonlinear Dyn. 86, 2115–2126 (2016)

    Article  MathSciNet  Google Scholar 

  41. Liu, Y.B., Fokas, A.S., Mihalache, D., He, J.H.: Parallel line rogue waves of the third-type Davey–Stewartson equation. Rom. Rep. Phys. 68, 1425–1446 (2016)

    Google Scholar 

  42. Porubov, A.V., Fradkov, A.L., Bondarenkov, R.S., Andrievsky, B.R.: Localization of the sine-Gordon equation solutions. Commun. Nonlinear Sci. Numer. Simul. 39, 29–37 (2016)

    Article  MathSciNet  Google Scholar 

  43. Chen, S.H., Grelu, P., Mihalache, D., Baronio, F.: Families of rational soliton solutions of the Kadomtsev–Petviashvili equation. Rom. Rep. Phys. 68, 1407–1424 (2016)

    Google Scholar 

  44. He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  Google Scholar 

  45. Mu, G., Qin, Z., Grimshaw, R.: Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation. SIAM J. Appl. Math. 75, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chowdury, A., Ankiewicz, A., Akhmediev, N.: Periodic and rational solutions of modified Korteweg–de Vries equation. Eur. Phys. J. D 70, 104 (2016)

    Article  Google Scholar 

  47. Weiss, J., Tabor, M., Carnvale, G.: The Painlevé property for partial differential equation. J. Math. Phys. 24, 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yao, R.X., Qu, C.Z., Li, Z.B.: Painlevé property and conservation laws of multi-component mKdV equations. Chaos Solitons Fractals 22, 723–730 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, D.S., Yu, Z.S., Zhang, H.Q.: New soliton-like solutions to variable coefficients mKdV equation. Commmun. Theor. Phys. 42, 649–654 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yeung, T.C.A., Fung, P.C.W.: Hamiltonian formulation of the inverse scattering method of the modified KdV equation under the non-vanishing boundary condition \(u(x, t)\) to \(b\) as \(x\) to \(+\) or \(-\) infinity. J. Phys. A 21, 3575–3592 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. He, J.S., Wang, L.H., Li, L.J., Porsezian, K., Erdélyi, R.: Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)

    Article  Google Scholar 

  52. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992)

    Article  MathSciNet  Google Scholar 

  53. Matveev, V.B.: Positon–positon and soliton–positon collisions: KdV case. Phys. Lett. A 166, 209–212 (1992)

    Article  MathSciNet  Google Scholar 

  54. Chow, K.W., Lai, W.C., Shek, C.K., Tso, K.: Positon-like solutions of nonlinear evolution equations in (2\(+\)1) dimensions. Chaos Solitons Fractals 9, 1901–1912 (1998)

  55. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010)

    Article  Google Scholar 

  56. Stahlofen, A.A.: Positons of the modified Korteweg–de Vries equation. Ann. Phys. 504, 554–569 (1992)

    Article  MathSciNet  Google Scholar 

  57. Maisch, H., Stahlofen, A.A.: Dynamic properties of positons. Phys. Scr. 52, 228–236 (1995)

    Article  Google Scholar 

  58. Beutler, R.: Positon solutions of the sine-Gordon equation. J. Math. Phys. 34, 3081–3109 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  59. Stahlofen, A.A., Matveev, V.B.: Positons for the Toda lattice and related spectral problems. J. Phys. A Math. Gen. 28, 1957–1965 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wadati, M.: The exact solution of the modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 32, 1681–1687 (1972)

    Article  Google Scholar 

  61. Wadati, M.: The modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 34, 1289–1296 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  62. Masataka, W., Hirota, R.: Soliton solutions of a coupled modified KdV equations. J. Phys. Soc. Jpn. 66, 577–588 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform–Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  64. Drinfel’d,V.G., Sokolov,V.V.: Lie algebras and equations of Korteweg-de Vries type. J. Sov. Math. 30, 1975–2036 (1985)

  65. Terng, C.L., Uhlenbeck, K.: Bäcklund transformations and loop group actions. Commun. Pure Appl. Math. 53, 1–75 (2000)

    Article  MATH  Google Scholar 

  66. Terng, C.L., Uhlenbeck, K.: The \(n\times n\) KdV flows. J. Fixed Point Theory Its Appl. 10, 37–61 (2011)

    Article  MATH  Google Scholar 

  67. Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 51, 2029–2035 (1982)

    Article  MathSciNet  Google Scholar 

  68. Olmedilla, E.: Multiple-pole solutions of the nonlinear Schrödinger’s equation. Phys. D 25, 330–346 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  69. Takahashi, H., Konno, K.: Initial value problems of double pole and breather solutions for the modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 58, 3585–3588 (1989)

    Article  MathSciNet  Google Scholar 

  70. Takahashi, M., Konno, K.: N-double pole solution for the modified Korteweg–de Vries equation by the Hirota’s method. J. Phys. Soc. Jpn. 58, 3505–3508 (1989)

    Article  MathSciNet  Google Scholar 

  71. Karlsson, M., Kaup, D.J., Malomed, B.A.: Interactions between polarized soliton pulses in optical fibers: exact solutions. Phys. Rev. E 54, 5802–5808 (1996)

    Article  Google Scholar 

  72. Shek, C.M., Grimshaw, R.H.J., Ding, E., Chow, K.W.: Interactions of breathers and solitons of the extended Korteweg–de Vries equation. Wave Mot. 43, 158–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  73. Alejo, M.A.: Focusing mKdV breather solutions with nonvanishing boundary condition by the inverse scattering method. J. Nonlinear Math. Phys. 19, 125009 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSF of China Under Grant No. 11671219, and the K. C. Wong Magna Fund in Ningbo University. We thank members of our group at Ningbo University for useful discussions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Q., Wu, Z., Mihalache, D. et al. Smooth positon solutions of the focusing modified Korteweg–de Vries equation. Nonlinear Dyn 89, 2299–2310 (2017). https://doi.org/10.1007/s11071-017-3579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3579-x

Keywords

Navigation