Skip to main content
Log in

Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In present work, new form of generalized fifth-order nonlinear integrable equation has been investigated by locating movable critical points with aid of Painlevé analysis and it has been found that this equation passes Painlevé test for \(\alpha =\beta \) which implies affirmation toward the complete integrability. Lie symmetry analysis is implemented to obtain the infinitesimals of the group of transformations of underlying equation, which has been further pre-owned to furnish reduced ordinary differential equations. These are then used to establish new abundant exact group-invariant solutions involving various arbitrary constants in a uniform manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  Google Scholar 

  2. Weiss, J.: The Painlevé property for partial differential equations II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 24, 1405–1413 (1983)

    Article  MathSciNet  Google Scholar 

  3. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  4. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  5. Gu, C.H.: Soliton Theory and Its Application. Springer, Berlin (1995)

    Book  Google Scholar 

  6. Kudryashov, N.A.: On types of nonlinear non-integrable equations with exact solutions. Phys. Lett. A 155, 269–275 (1991)

    Article  MathSciNet  Google Scholar 

  7. Zhang, H.: Extended Jacobi elliptic function expansion method and its application. Commun. Nonlinear Sci. Numer Simul. 12, 627–635 (2007)

    Article  MathSciNet  Google Scholar 

  8. Hong, B.: New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation. Appl. Math. Comput. 215, 2908–2913 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Abdou, M.A., Soliman, A.A.: Modified extended tanh-function method and its application on nonlinear physical equations. Phy. Lett. A 353, 487–492 (2006)

    Article  Google Scholar 

  10. Zhu, S.: The generalized Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti-Leon-Pempinelle equation. Chaos Soliton Fractals 37, 1335–1342 (2008)

    Article  Google Scholar 

  11. Kaur, L., Gupta, R.K.: Kawahara equation and modified Kawahara equation with time dependent coefficients: symmetry analysis and generalized \(\frac{G^{\prime }}{G}\) expansion method. Math. Methods Appl. Sci. 36, 584–600 (2013)

    Article  MathSciNet  Google Scholar 

  12. Triki, H., Wazwaz, A.M.: A new trial equation method for finding exact chirped soliton solutions of the quintic derivative nonlinear Schr\(\ddot{\text{ o }}\)dinger equation with variable coefficients. Waves Random Complex Media 27, 153–162 (2016)

    Article  Google Scholar 

  13. Wazwaz, A.M.: A new integrable (2+1)-dimensional generalized breaking soliton equation: N-soliton solutions and travelling wave solutions. Commun. Theor. Phys. 66, 385–388 (2016)

    Article  Google Scholar 

  14. Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equations. Nonlinear Dyn. 89, 1727–1732 (2017)

    Article  MathSciNet  Google Scholar 

  15. Cantwell, B.J.: Introduction to Symmetry Analysis Paperback with CD-ROM. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  16. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  17. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  Google Scholar 

  18. Kaur, L., Gupta, R.K.: Some invariant solutions of field equations with axial symmetry for empty space containing an electrostatic field. Appl. Math. Comp. 231, 560–565 (2014)

    Article  MathSciNet  Google Scholar 

  19. Zhao, Z., Han, B.: Lie symmetry analysis, Bäcklund transformations, and exact solutions of a (2 + 1)-dimensional Boiti–Leon–Pempinelli system. J. Math. Phys. 58, 101514(15pp) (2017)

    Article  MathSciNet  Google Scholar 

  20. Waclawczyk, M., Grebenev, V.N., Oberlack, M.: Lie symmetry analysis of the Lundgren–Monin–Novikov equations for multi-point probability density functions of turbulent flow. J. Phys. A: Math. Theor. 50, 175501(23pp) (2017)

    Article  MathSciNet  Google Scholar 

  21. Kumar, V., Kaur, L., Kumar, A., Koksal, M.E.: Lie symmetry based analytical and numerical approach for modified Burgers-KdV equation. Results Phys. 8, 1136–1142 (2018)

    Article  Google Scholar 

  22. Kaur, L., Wazwaz, A.M.: Similarity solutions of field equations with an electromagnetic stress tensor as source. Rom. Rep. Phys. (In Press) (2018)

  23. Wazwaz, A.M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83, 035003(4pp) (2011)

    Article  Google Scholar 

  24. Wazwaz, A.M.: Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn. 91, 877–883 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhveer Kaur.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, L., Wazwaz, AM. Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn 94, 2469–2477 (2018). https://doi.org/10.1007/s11071-018-4503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4503-8

Keywords

Navigation