Advertisement

Nonlinear Dynamics

, Volume 97, Issue 4, pp 2355–2370 | Cite as

Chaos and hyperchaos via secondary Neimark–Sacker bifurcation in a model of radiophysical generator

  • Nataliya StankevichEmail author
  • Alexander Kuznetsov
  • Elena Popova
  • Evgeniy Seleznev
Original paper
  • 145 Downloads

Abstract

Using an example of a radiophysical generator model, scenarios for the formation of various chaotic attractors are described, including chaos and hyperchaos. It is shown that as a result of a secondary Neimark–Sacker bifurcation, a hyperchaos with two positive Lyapunov exponents can occur in the system. A comparative analysis of chaotic attractors born as a result of loss of smoothness of an invariant curve, as a result of period-doubling bifurcations, and as a result of secondary Neimark–Sacker bifurcation was carried out.

Keywords

Hyperchaos Secondary Neimark–Sacker bifurcation Quasiperiodic oscillations Multistability Lyapunov exponents 

Mathematics Subject Classification

37C55 37E45 37E99 

Notes

Acknowledgements

Authors thank Igor Sataev, Alexey Kazakov and Serhiy Yanchuk for fruitful discussion of this problem.

Funding

The work was carried out with the financial support of the Russian Foundation of Basic Research, Grant No. 18-32-00285 (Introduction, Sects. 234.1) and Russian Science Foundation, Grant No. 17-12-01008 (Sect. 4.2). Analysis of multistability was carried out in the frame of project of the Russian Foundation of Basic Research, Grant No. 19-02-00610.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Schuster, H.G.: Deterministic chaos: an introduction, p. 220. Physik-Verlag, Weinheim (1984) zbMATHGoogle Scholar
  2. 2.
    Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic Synchronization: Applications to Living Systems, vol. 42. World Scientific, Singapore (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2014)zbMATHGoogle Scholar
  4. 4.
    Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: a method for computing all of them. Meccanica 15, 9–30 (1980)CrossRefzbMATHGoogle Scholar
  5. 5.
    Pikovsky, A., Politi, A.: Lyapunov Exponents: A Tool to Explore Complex Dynamics. Cambridge University Press, Cambridge (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Rossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tamasevicius, A., Namajunas, A., Cenys, A.: Simple 4D chaotic oscillator. Electron. Lett. 32, 957–958 (1996)CrossRefGoogle Scholar
  8. 8.
    Blokhina, E.V., Kuznetsov, S.P., Rozhnev, A.G.: High-dimensional chaos in a gyrotron. IEEE Trans. Electron Dev. 54, 188–193 (2007)CrossRefGoogle Scholar
  9. 9.
    Rozental’, R.M., Isaeva, O.B., Ginzburg, N.S., Zotova, I.V., Sergeev, A.S., Rozhnev, A.G.: Characteristics of chaotic regimes in a space-distributed gyroklystron model with delayed feedback. Russ. J. Nonlinear Dyn. 14, 155–168 (2018)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen, Z., Yang, Y., Qi, G., Yuan, Z.: A novel hyperchaos system only with one equilibrium. Phys. Lett. A 360, 696–701 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wu, W., Chen, Z., Yuan, Z.: The evolution of a novel fourdimensional autonomous system: among 3-torus, limit cycle, 2-torus, chaos and hyperchaos. Chaos Solitons Fractals 39, 2340–2356 (2009)CrossRefGoogle Scholar
  12. 12.
    Li, Q., Tang, S., Zeng, H., Zhou, T.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78, 1087–1099 (2014)CrossRefzbMATHGoogle Scholar
  13. 13.
    Li, Q., Zeng, H., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Biswas, D., Banerjee, T.: A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation. Nonlinear Dyn. 83, 2331–2347 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fonzin, T.F., Kengne, J., Pelap, F.B.: Dynamical analysis and multistability in autonomous hyperchaotic oscillator with experimental verification. Nonlinear Dyn. 93, 653–669 (2018)CrossRefGoogle Scholar
  16. 16.
    Kapitaniak, T., Thylwe, K.E., Cohen, I., Wojewoda, J.: Chaos-hyperchaos transition. Chaos Solitons Fractals 5, 2003–2011 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Harrison, M.A., Lai, Y.C.: Route to high-dimensional chaos. Phys. Rev. E 59, R3799 (1999)CrossRefGoogle Scholar
  18. 18.
    Kapitaniak, T., Maistrenko, Y., Popovych, S.: Chaos–hyperchaos transition. Phys. Rev. E 62, 1972 (2000)CrossRefGoogle Scholar
  19. 19.
    Yanchuk, S., Kapitaniak, T.: Symmetry-increasing bifurcation as a predictor of a chaos–hyperchaos transition in coupled systems. Phys. Rev. E 64, 056235 (2001)CrossRefGoogle Scholar
  20. 20.
    Nikolov, S., Clodong, S.: Hyperchaos–chaos–hyperchaos transition in modified Rössler systems. Chaos Solitons Fractals 28, 252–263 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Harikrishnan, K.P., Misra, R., Ambika, G.: On the transition to hyperchaos and the structure of hyperchaotic attractors. Eur. Phys. J. B 86, 1–12 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, Q., Tang, S., Yang, X.S.: Hyperchaotic set in continuous chaos–hyperchaos transition. Commun. Nonlinear Sci. Numer. Simul. 19, 3718–3734 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Munteanu, L., Brian, C., Chiroiu, V., Dumitriu, D., Ioan, R.: Chaos–hyperchaos transition in a class of models governed by Sommerfeld effect. Nonlinear Dyn. 78, 1877–1889 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gonchenko, S.V., Ovsyannikov, I.I., Simò, C., Turaev, D.: Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Int. J. Bifurc. Chaos 15, 3493–3508 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Gonchenko, A.S., Gonchenko, S.V., Shilnikov, L.P.: Towards scenarios of chaos appearance in three-dimensional maps. Russ. J. Nonlinear Dyn. 8, 3–28 (2012). (Russian)Google Scholar
  26. 26.
    Gonchenko, A., Gonchenko, S., Kazakov, A., Turaev, D.: Simple scenarios of onset of chaos in three-dimensional maps. Int. J. Bifurc. Chaos 24, 1440005 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Stankevich, N.V., Dvorak, A., Astakhov, V., Jaros, P., Kapitaniak, M., Perlikowski, P., Kapitaniak, T.: Chaos and hyperchaos in coupled antiphase driven toda oscillators. Regul. Chaotic Dyn. 23, 120–126 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kuznetsov, A.P., Sedova, Y.V.: Coupled systems with hyperchaos and quasiperiodicity. J. Appl. Nonlinear Dyn. 5, 161–167 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rech, P.C.: Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system. Eur. Phys. J. B 90, 251 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Amabili, M., Karagiozis, K., Païdoussis, M.P.: Hyperchaotic behaviour of shells subjected to flow and external force. In: ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers, pp. 1209–1217 (2010)Google Scholar
  31. 31.
    Kuznetsov, A.P., Migunova, N.A., Sataev, I.R., Sedova, YuV, Turukina, L.V.: From chaos to quasi-periodicity. Regul. Chaotic Dyn. 20, 189–204 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Stankevich, N.V., Astakhov, O.V., Kuznetsov, A.P., Seleznev, E.P.: Exciting chaotic and quasi-periodic oscillations in a multicircuit oscillator with a common control scheme. Tech. Phys. Lett. 44, 428–431 (2018)CrossRefGoogle Scholar
  33. 33.
    Anishchenko, V.S., Nikolaev, S.M.: Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations. Tech. Phys. Lett. 31, 853–855 (2005)CrossRefGoogle Scholar
  34. 34.
    Anishchenko, V.S., Nikolaev, S.M., Kurths, J.: Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus. Phys. Rev. E 76, 046216 (2007)CrossRefGoogle Scholar
  35. 35.
    Kuznetsov, A.P., Stankevich, N.V.: Autonomous systems with quasiperiodic dynamics. Examples and their properties: review. Izv. VUZ Appl. Nonlinear Dyn. 23, 71–93 (2015). (in Russia)Google Scholar
  36. 36.
    Kuznetsov, N.V.: The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A 380, 2142–2149 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N., Prasad, A., Shrimali, M.D.: Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn. 92, 267–285 (2018)CrossRefzbMATHGoogle Scholar
  38. 38.
    Zhusubaliyev, Z.T., Mosekilde, E.: Formation and destruction of multilayered tori in coupled map systems. Chaos 18, 037124 (2008)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zhusubaliyev, Z.T., Laugesen, J.L., Mosekilde, E.: From multi-layered resonance tori to period-doubled ergodic tori. Phys. Lett. A 374, 2534–2538 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Vitolo, R., Broer, H., Simó, C.: Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms. Nonlinearity 23, 1919–1947 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Broer, H., Simó, C., Vitolo, R.: Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems. Regul. Chaotic Dyn. 16, 154–184 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Komuro, M., Kamiyama, K., Endo, T., Aihara, K.: Quasi-periodic bifurcations of higher-dimensional tori. Int. J. Bifurc. Chaos 26, 1630016 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Wieczorek, S., Krauskopf, B., Lenstra, D.: Mechanisms for multistability in a semiconductor laser with optical injection. Opt. Commun. 183, 215–226 (2000)CrossRefGoogle Scholar
  44. 44.
    Stankevich, N.V., Volkov, E.I.: Multistability in a three-dimensional oscillator: tori, resonant cycles and chaos. Nonlinear Dyn. 94, 2455–2467 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Radio-Electronics and TelecommunicationYuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.Saratov BranchKotel’nikov’s Institute of Radio-Engineering and Electronics of RASSaratovRussia
  3. 3.Department of Applied CyberneticsSaint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations