Skip to main content
Log in

Dynamical analysis and multistability in autonomous hyperchaotic oscillator with experimental verification

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this contribution, a modified oscillator of Tamasevicius et al. (Electron Lett 33:542–544, 1997) (referred to as the mTCMNL oscillator hereafter) is introduced with antiparallel diodes as nonlinear elements. The model is described by a continuous time of four-dimensional autonomous system with hyperbolic sine nonlinearity based on Shockley diode model. Various methods for characterizing chaos/hyperchaos including bifurcation diagrams, Lyapunov exponents spectrum, frequency spectra, phase portraits, Poincaré sections and two parameter Lyapunov exponents diagrams are exploited to point out the rich dynamical behaviors in the model. Numerical results indicate that the system displays extremely rich dynamical behaviors including periodic windows, torus, chaotic and hyperchaotic oscillations. One of the main findings of this work is the presence of a region in the parameter space in which the mTCMNL experiences hysteretic behaviors. This later singularity/phenomenon is marked by the coexistence of multiple attractors (i.e., coexistence of asymmetric pair of periodic, torus and chaotic attractors with symmetric periodic, torus and chaotic attractors), for the same parameters settings. Basins of attractions of various competing attractors depicts symmetric complex basin boundaries, thus suggesting possible jumps between coexisting solutions (i.e., asymmetric pair of attractors with symmetric one) in experiments. A predominant route to chaos/hyperchaos observed in the system for different system parameters is the Afraimovich–Shilnikov scenario with tiny periodic regions. Experimental results from real-time circuit implementation are in good agreement with numerical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tamasevicius, A., Cenys, A., Mykolaitis, G., Namajunas, A., Lindberg, E.: Hyperchaotic oscillator with gyrators. Electron. Lett. 33, 542–544 (1997)

    Article  Google Scholar 

  2. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Louodop, P., Fotsin, H., Kountchou, M., Ngouonkadi, E.B.M., Cerdeira, H.A., Bowong, S.: Finite-time synchronization of tunnel-diode-based chaotic oscillators. Phys. Rev. E 89(3), 032,921 (2014)

    Article  Google Scholar 

  4. Ngouonkadi, E.B.M., Fotsin, H.B., Nono, M.K., Fotso, P.H.L.: Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design. Cognit. Neurodyn. 10 (5), 385–404 (2016)

  5. Ngouonkadi, E.M., Fotsin, H., Fotso, P.L.: Implementing a memristive van der pol oscillator coupled to a linear oscillator: synchronization and application to secure communication. Phys. Scr. 89(3), 035,201 (2014)

    Article  Google Scholar 

  6. Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18(1), 141–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Murali, K., Lakshmanan, M.: Secure communication using a compound signal from generalized synchronizable chaotic systems. Phys. Lett. A 241(6), 303–310 (1998)

    Article  MATH  Google Scholar 

  8. Duan, C., Yang, S.: Synchronizing hyperchaos with a scalar signal by parameter controlling. Phys. Lett. A 229(3), 151–155 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pérez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74(11), 1970 (1995)

    Article  Google Scholar 

  10. Matsumoto, T., Chua, L., Kobayashi, K.: Hyper chaos: laboratory experiment and numerical confirmation. IEEE Trans. Circuits Syst. 33(11), 1143–1147 (1986)

    Article  Google Scholar 

  11. Lakshmanan, M., Senthilkumar, D.V.: Dynamics of Nonlinear Time-Delay Systems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  12. Tamaševičius, A., Čenys, A.: Hyperchaos in dynamical systems with a monoactive degree of freedom. Chaos Solitons Fractals 9(1), 115–119 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Thamilmaran, K., Lakshmanan, M., Venkatesan, A.: Hyperchaos in a modified canonical chua’s circuit. Int. J. Bifurc. Chaos 14(01), 221–243 (2004)

    Article  MATH  Google Scholar 

  14. Nishio, Y., Mori, S., Saito, T.: Extremely simple hyperchaos generators including one diode. In: 1992 IEEE International Symposium on Circuits and Systems. ISCAS’92. Proceedings, vol. 6, pp. 2797–2800. IEEE (1992)

  15. Kengne, J., Chedjou, J., Fozin, T.F., Kyamakya, K., Kenne, G.: On the analysis of semiconductor diode-based chaotic and hyperchaotic generators-a case study. Nonlinear Dyn. 77(1–2), 373–386 (2014)

    Article  MathSciNet  Google Scholar 

  16. Fonzin Fozin, T., Kengne, J., Pelap, F.B.: Theoretical analysis and adaptive synchronization of a 4D hyperchaotic oscillator. J. Chaos 2014, 1–5 (2014)

  17. Kengne, J.: Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurc. Chaos 25(04), 1550,052 (2015)

    Article  MathSciNet  Google Scholar 

  18. Jeevarekha, A., Sabarathinam, S., Thamilmaran, K., Philominathan, P.: Analysis of 4D autonomous system with volume-expanding phase space. Nonlinear Dyn. 84(4), 2273–2284 (2016)

  19. Kengne, J., Tabekoueng, Z.N., Fotsin, H.: Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 36, 29–44 (2016)

    Article  MathSciNet  Google Scholar 

  20. Hellen, E.H., Lanctot, M.J.: Nonlinear damping of the LC circuit using antiparallel diodes. Am. J. Phys. 75(4), 326–330 (2007)

    Article  Google Scholar 

  21. Mohammadi, A., Shayegh, F., Abdipour, A., Mirzavand, R.: Direct conversion EHM transceivers design for millimeter-wave wireless applications. EURASIP J. Wirel. Commun. Netw. 2007(1), 1–9 (2007)

    Article  Google Scholar 

  22. Mohyuddin, W., Kim, K.W., Choi, H.C.: Compact wideband antiparallel diode frequency triplers utilizing planar transitions. Int. J. Antennas Propag. 2015, 1–7 (2015)

  23. Itoh, M.: Synthesis of electronic circuits for simulating nonlinear dynamics. Int. J. Bifurc. Chaos 11(03), 605–653 (2001)

    Article  MathSciNet  Google Scholar 

  24. Kengne, J., Njitacke, Z., Nguomkam Negou, A., Fouodji Tsostop, M., Fotsin, H.: Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int. J. Bifurc. Chaos 26(05), 1650,081 (2016)

    Article  MATH  Google Scholar 

  25. Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., Hu, Y.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711–1723 (2016)

    Article  Google Scholar 

  26. Bao, B., Li, Q., Wang, N., Xu, Q.: Multistability in chua’s circuit with two stable node-foci. Chaos Interdiscip. J. Nonlinear Sci. 26(4), 043,111 (2016)

    Article  MathSciNet  Google Scholar 

  27. Sprott, J.C., Wang, X., Chen, G.: Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos 23(05), 1350,093 (2013)

    Article  MathSciNet  Google Scholar 

  28. Ngouonkadi, E.M., Fotsin, H., Fotso, P.L., Tamba, V.K., Cerdeira, H.A.: Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator. Chaos Solitons Fractals 85, 151–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sprott, J.C., Li, C.: Asymmetric bistability in the Rössler system. Acta Phys. Pol. B 48(1), 97 (2017)

    Article  Google Scholar 

  30. Jafari, S., Sprott, J.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cushing, J.M., Henson, S.M., Blackburn, C.C.: Multiple mixed-type attractors in a competition model. J. Biol. Dyn. 1(4), 347–362 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Upadhyay, R.K.: Multiple attractors and crisis route to chaos in a model food-chain. Chaos Solitons Fractals 16(5), 737–747 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55(1), 15–35 (1993)

    Article  MATH  Google Scholar 

  34. Masoller, C.: Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys. Rev. A 50(3), 2569 (1994)

    Article  Google Scholar 

  35. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167–218 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 88(4), 2589–2608 (2017)

    Article  Google Scholar 

  37. Alombah, N.H., Fotsin, H., Romanic, K.: Coexistence of multiple attractors, metastable chaos and bursting oscillations in a multiscroll memristive chaotic circuit. Int. J. Bifurc. Chaos 27(05), 1750,067 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sprott, J.C.: Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  39. Morfu, S., Nofiele, B., Marquié, P.: On the use of multistability for image processing. Phys. Lett. A 367(3), 192–198 (2007)

    Article  MATH  Google Scholar 

  40. Sharma, P., Shrimali, M., Prasad, A., Kuznetsov, N., Leonov, G.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485–1491 (2015)

    Article  Google Scholar 

  41. Aronson, D., Chory, M., Hall, G., McGehee, R.: Bifurcations from an invariant circle for two-parameter families of maps of the plane: a computer-assisted study. Commun. Math. Phys. 83(3), 303–354 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stegemann, C., Albuquerque, H.A., Rubinger, R.M., Rech, P.C.: Lyapunov exponent diagrams of a 4-dimensional chua system. Chaos Interdiscip. J. Nonlinear Sci. 21(3), 033,105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rech, P.C.: Hyperchaos and quasiperiodicity from a fourdimensional system based on the Lorenz system. Eur. Phys. J. B 90(12), 251 (2017)

    Article  Google Scholar 

  45. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66(2), 026,702 (2002)

    Article  MATH  Google Scholar 

  46. Thiel, M., Romano, M.C., Kurths, J.: How much information is contained in a recurrence plot? Phys. Lett. A 330(5), 343–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Franceschini, V.: Bifurcations of tori and phase locking in a dissipative system of differential equations. Physica D 6(3), 285–304 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  48. Afraimovich, V., Shilnikov, L.P.: Invariant two-dimensional tori, their breakdown and stochasticity. Am. Math. Soc. Transl. 149(2), 201–212 (1991)

    Google Scholar 

  49. El Aroudi, A., Benadero, L., Toribio, E., Machiche, S.: Quasiperiodicity and chaos in the dcdc buckboost converter. Int. J. Bifurc. Chaos 10(02), 359–371 (2000)

    Article  Google Scholar 

  50. Letellier, C., Messager, V., Gilmore, R.: From quasiperiodicity to toroidal chaos: analogy between the Curry–Yorke map and the van der pol system. Phys. Rev. E 77(4), 046,203 (2008)

    Article  MathSciNet  Google Scholar 

  51. Maistrenko, Y.L., Popovych, O.V., Tass, P.A.: Chaotic attractor in the Kuramoto model. Int. J. Bifurc. Chaos 15(11), 3457–3466 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhusubaliyev, Z.T., Mosekilde, E.: Novel routes to chaos through torus breakdown in non-invertible maps. Physica D 238(5), 589–602 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Maurer, J., Libchaber, A.: Rayleigh–Bénard experiment in liquid helium; frequency locking and the onset of turbulence. Journal de Physique Lettres 40(16), 419–423 (1979)

    Article  Google Scholar 

  54. Alombah, N.H., Fotsin, H., Ngouonkadi, E.M., Nguazon, T.: Dynamics, analysis and implementation of a multiscroll memristor-based chaotic circuit. Int. J. Bifurc. Chaos 26(08), 1650,128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kountchou, M., Louodop, P., Bowong, S., Fotsin, H., et al.: Analog circuit design and optimal synchronization of a modified Rayleigh system. Nonlinear Dyn. 85(1), 399–414 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

T. F. Fonzin acknowledges firstly DST-FICCI through the C V Raman International Fellowship for African Researchers (INT /NAI/CVRF/2014) for the financial support. Secondly, he acknowledges Mr. Danda Samuel and Mr. Jiogo Guy from National Advanced School of Post and Telecommunication (SUP’PTIC) of Yaoundé-Cameroon for the material grant necessary for experimental analysis. Also, he acknowledges Prof. M. Lakshmanan, Dr. A. Venkatesan and Dr. K. Suresh from Centre for Nonlinear Dynamics (CNLD), Tiruchirappalli, India, for all the helpful discussions and readings. Finally, authors would like to convey thanks to the anonymous reviewers for their useful suggestions and comments that helped to improve the content of the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. B. Pelap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fozin Fonzin, T., Kengne, J. & Pelap, F.B. Dynamical analysis and multistability in autonomous hyperchaotic oscillator with experimental verification. Nonlinear Dyn 93, 653–669 (2018). https://doi.org/10.1007/s11071-018-4216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4216-z

Keywords

Navigation