Skip to main content
Log in

On hyperchaos in a small memristive neural network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies a small Hopfield neural network with a memristive synaptic weight. We show that the previous stable network after one weight replaced by a memristor can exhibit rich complex dynamics, such as quasi-periodic orbits, chaos, and hyperchaos, which suggests that the memristor is crucial to the behaviors of neural networks and may play a significant role. We also prove the existence of a saddle periodic orbit, and then present computer-assisted verification of hyperchaos through a homoclinic intersection of the stable and unstable manifolds, which gives a positive answer to an interesting question that whether a 4D memristive system with a line of equilibria can demonstrate hyperchaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A C++ package for rigorous computation of dynamical systems by CAPD Group, website http://capd.wsb-nlu.edu.pl.

  2. GNU Multiple Precision Arithmetic Library, website http://gmplib.org.

  3. A C library for multiple-precision floating-point computations with correct rounding, website http://www.mpfr.org.

References

  1. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of 2-state neurons. Proc. Natl. Acad. Sci. USA 81(10), 3088–3092 (1984)

    Article  Google Scholar 

  2. Chua, L., Sbitnev, V., Kim, H.: Hodgkin-Huxley axon is made of memristors. Int. J. Bifurc. Chaos 22(03), 1230011 (2012)

    Article  Google Scholar 

  3. Kim, H., et al.: Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circuits Syst. I-Regul. Pap. 59(1), 148–158 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  5. Chua, L.O.: Memristor—missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  6. Strukov, D.B., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  7. Wu, A.L., Zeng, Z.G.: Anti-synchronization control of a class of memristive recurrent neural networks. Commun. Nonlinear Sci. Numer. Simul. 18(2), 373–385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, A.L., Zhang, J., Zeng, Z.G.: Dynamic behaviors of a class of memristor-based Hopfield networks. Phys. Lett. A 375(15), 1661–1665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Itoh, M., Chua, L.O.: Autoassociative memory cellular neural networks. Int. J. Bifurc. Chaos 20(10), 3225–3266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010)

    Article  Google Scholar 

  11. Babloyantz, A., Lourenco, C.: Brain chaos and computation. Int. J. Neural Syst. 7(4), 461–471 (1996)

    Article  Google Scholar 

  12. Guevara, M.R., et al.: Chaos in neurobiology. IEEE Trans. Syst. Man Cybern. 13(5), 790–798 (1983)

    Article  MATH  Google Scholar 

  13. Yang, X.S., Huang, Y.: Complex dynamics in simple Hopfield neural networks. Chaos 16(3), 033114 (2006)

    Article  Google Scholar 

  14. Li, Q.D., Yang, X.S., Yang, F.Y.: Hyperchaos in Hopfield-type neural networks. Neurocomputing 67, 275–280 (2005)

    Article  Google Scholar 

  15. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144(6), 333–340 (1990)

    Article  MathSciNet  Google Scholar 

  16. Bersini, H., Sener, P.: The connections between the frustrated chaos and the intermittency chaos in small Hopfield networks. Neural Netw. 15(10), 1197–1204 (2002)

    Article  Google Scholar 

  17. Das, P.K., Schieve, W.C., Zeng, Z.J.: Chaos in an effective 4-neuron neural network. Phys. Lett. A 161(1), 60–66 (1991)

    Article  Google Scholar 

  18. Zheng, P., Tang, W., Zhang, J.: Dynamic analysis of unstable Hopfield networks. Nonlinear Dyn. 61(3), 399–406 (2010)

  19. Buscarino, A., et al.: Memristive chaotic circuits based on cellular nonlinear networks. Int. J. Bifurc. Chaos 22(3), 1250070 (2012)

    Article  MathSciNet  Google Scholar 

  20. Riaza, R.: Dynamical properties of electrical circuits with fully nonlinear memristors. Nonlinear Anal.-Real World Appl. 12(6), 3674–3686 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70(2), 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  22. Bao, B.C., et al.: Dynamics analysis of chaotic circuit with two memristors. Sci. China-Technol. Sci. 54(8), 2180–2187 (2011)

    Article  MATH  Google Scholar 

  23. Messias, M., Nespoli, C., VANESSA, A.B.: Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurc. Chaos 20(02), 437–450 (2010)

    Article  MATH  Google Scholar 

  24. Wang, X., Chen, G.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71(3), 429–436 (2013)

    Article  Google Scholar 

  25. Li, Q., Zeng, H., Yang, X.-S.: On hidden twin attractors and bifurcation in the Chua’s circuit. Nonlinear Dyn. 77 (1-2), 255–266 (2014)

  26. Bao, B.C., et al.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(9), 2629–2645 (2011)

    Article  MATH  Google Scholar 

  27. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(5), 1335–1350 (2010)

    Article  MATH  Google Scholar 

  28. Itoh, M., Chua, L.O.: Memristor Hamiltonian circuits. Int. J. Bifurc. Chaos 21(9), 2395–2425 (2011)

    Article  MATH  Google Scholar 

  29. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. El-Sayed, A., et al.: Dynamical behavior, chaos control and synchronization of a memristor-based ADVP circuit. Commun. Nonlinear Sci. Numer. Simul. 18(1), 148–170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Muthuswamy, B., Kokate, P.P.: Memristor-based chaotic circuits. IETE Tech. Review 26(6), 417–429 (2009)

    Article  Google Scholar 

  32. Li, Q., et al.: Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circuit Theory Appl. (2013). doi:10.1002/cta.1912

  33. Li, Q.: A topological horseshoe in the hyperchaotic Rossler attractor. Phys. Lett. A 372(17), 2989–2994 (2008)

  34. Li, Q., Tang, S.: Algorithm for finding horseshoes in three-dimensional hyperchaotic maps and its application. Acta Phys. Sin. 62(2), 020510 (2013)

    Google Scholar 

  35. Li, Q., Yang, X.-S.: A simple method for finding topological horseshoes. Int. J. Bifurc. Chaos 20(02), 467–478 (2010)

    Article  MATH  Google Scholar 

  36. Li, Q., Yang, X.-S.: Two kinds of horseshoes in a hyperchaotic neural network. Int. J. Bifurc. Chaos 22(08), 1250200 (2012)

    Article  Google Scholar 

  37. Li, Q., Yang, X.-S., Chen, S.: Hyperchaos in a spacecraft power system. Int. J. Bifurc. Chaos 21(06), 1719–1726 (2011)

    Article  MATH  Google Scholar 

  38. Zhou, P., Yang, F.: Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points. Nonlinear Dyn. 76(1), 473–480 (2014)

    Article  MathSciNet  Google Scholar 

  39. Alefeld, G.: Inclusion methods for systems of nonlinear equations—the interval Newton method and modifications. In: Herzberger, J. (ed.) Topics in Validated Computations, pp. 7–26. Elsevier Science Publishers, Amsterdam (1994)

    Google Scholar 

  40. Zgliczynski, P.: \(C^{1}\) Lohner algorithm. Found. Comput. Math. 2(4), 429–465 (2008)

    Article  MathSciNet  Google Scholar 

  41. Wilczak, D., Zgliczyński, P.: \( C^{r}\) -Lohner algorithm. (2007) arXiv, preprint arXiv:0704.0720

  42. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer Verlag, Berlin (2003)

    MATH  Google Scholar 

  43. Li, Q.-D., Zhou, L., Zhou, H.-W.: Computation for two-dimension unstable manifold of map. J. Chongqing Univ. Posts Telecommun. (Natural Science) 22(3), 339–344 (2010)

  44. Yang, X.-S.: Topological horseshoes and computer assisted verification of chaotic dynamics. Int. J. Bifurc. Chaos 19(4), 1127–1145 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to the reviewers for their valuable comments and suggestions. This work is supported in part by the National Natural Science Foundation of China (61104150), Science Fund for Distinguished Young Scholars of Chongqing (cstc2013jcyjjq40001), and the Science and Technology Project of Chongqing Education Commission (KJ130517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingdu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Tang, S., Zeng, H. et al. On hyperchaos in a small memristive neural network. Nonlinear Dyn 78, 1087–1099 (2014). https://doi.org/10.1007/s11071-014-1498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1498-7

Keywords

Navigation