Skip to main content
Log in

Modeling and simulation of planar multibody systems considering multiple revolute clearance joints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a general procedure for dynamic modeling and simulation of planar multibody systems considering multiple revolute clearance joints. The normal contact force is evaluated by a hybrid continuous contact force model, established on the base of the Lankarani–Nikravesh (L–N) model and the elastic foundation model. The LuGre friction law is employed to describe the tangential effect. The effectiveness of the presented methodology is demonstrated through the comparisons with the MSC ADAMS software simulation results of a slider–crank mechanism with clearance joints. Then, the system behavior affected by dynamic interaction of three revolute clearance joints is analyzed and some kinds of 27 combination modes are presented. Additionally, a comprehensive analysis of the system responses in a wide range of dynamic simulation parameters is conducted to find out some inner rules existed in the mechanical system with revolute clearance joints. Results show that there exists a strong dynamic interaction between different clearance joints, indicating that all joints should be modeled as imperfect to achieve a further understanding of multibody system behavior. Also, the clearance joint nearer to the input link is found to suffer more serious contact effects, require more input torque and cost longer computational time. Furthermore, the system dynamics relies on many factors, even a small change of which may lead to different system responses, changing from periodic to chaotic and the other way around. In addition, several characteristic values have been captured from the simulation results, which need to be paid more attention in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Abbreviations

\(A_i \) :

Area of ith element

\(\mathbf{A}_{I} ,\mathbf{A}_{\textit{II}} \) :

Transformation matrices

c :

Radial clearance

\(c_\mathrm{e} \) :

Restitution coefficient

\(D_i \) :

Damping coefficient for the ith element

\(D_i^{\bmod } \) :

Modified damping coefficient of the ith element

\(\mathbf{e}\) :

Eccentricity vector

E :

Elastic modulus

\(\mathbf{F}_\mathrm{T} \) :

Tangential friction force

\(\mathbf{F}_\mathrm{N} \) :

Overall contact force in the contact area

\(\mathbf{F}_{\mathrm{N}i} \) :

The ith element total contact force

\(F_{\mathrm{N}ix} ,F_{\mathrm{N}iy} \) :

Components along axes x and y of F \(_{\mathrm{N}i}\)

\(F_{\mathrm{N}x} , F_{\mathrm{N}y} \) :

Components along axes x and y of F \(_\mathrm{N}\)

h :

Length of the pin

\(H_j \) :

Weight coefficient

\(K_i \) :

Contact stiffness coefficient for the ith element

\(L_i \) :

Thickness of the elastic layer

\(\mathbf{M}\) :

Global system mass matrix

\(m_1 \) :

Number of the bearing points

\(m_2 \) :

Number of the elements

\(\mathbf{n}\) :

Unit direction of eccentricity vector

n :

Contact exponent

\(p_i \) :

Contact pressure of spring i

\(\mathbf{q}\) :

Vector of generalized coordinates

\({\ddot{\mathbf{q}}}\) :

Vector of acceleration

\(\mathbf{Q}^{A}\) :

Vector of applied loads

\(R_1,R_2 \) :

The radii of the bushing and pin

\(\mathbf{r}_{I} \), \(\mathbf{r}_{\textit{II}} \), \(\mathbf{r}_{I}^{P_1 } \), \(\mathbf{r}_{I}^B \), \(\mathbf{r}_{\textit{II}}^{P_2} \),\(\mathbf{r}_{\textit{II}}^C \) :

Global vectors

\(\mathbf{s}_{I} \), \(\mathbf{s}_{\textit{II}} \) :

Local vectors

t :

Time

z :

Internal state

\({\varvec{\uptau }} \) :

Tangential velocity direction

\(\mu _\mathrm{k} \) :

Kinetic friction coefficient

\(\mu _\mathrm{s} \) :

Static friction coefficient

\(v_\mathrm{N} \),\(v_\mathrm{T} \) :

Normal and tangential velocities

\(v_\mathrm{S} \) :

Characteristic Stribeck velocity

\(\upsilon \) :

Poisson’s ratio

\(\sigma _0 \) :

Bristle stiffness

\(\sigma _1 \) :

Microscopic damping

\(\sigma _2 \) :

The viscous friction coefficient

\(\delta _{si} \) :

Deformation of the ith spring

\(\delta _i \) :

Penetration of ith element

\(\dot{\delta }_i \) :

Relative penetration velocity of ith element

\(\dot{\delta }_i ^{(-)}\) :

Initial penetration velocity of ith element

\(\delta _{ij} \) :

Penetration of thejth bearing point in the ith element

\({\varvec{\Phi }} \) :

Constraint vector

\({\varvec{\Phi }} _\mathbf{q} \) :

Jacobian matrix

\({\varvec{\lambda }} \) :

Vector of Lagrange multipliers

\({\varvec{\uprho }} \) :

The vector of quadratic velocity terms

\(\theta _i\) :

The ith Element angle from pin center

\(\varphi _{{\textit{I}}} ,\varphi _{{II}} \) :

Local orienting angles relative to the global x-axis

References

  1. Pereira, C.M., Ramalho, A.L., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63, 681–697 (2011)

    Article  Google Scholar 

  2. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37, 895–913 (2002)

    Article  MATH  Google Scholar 

  3. Tian, Q., Zhang, Y.Q., Chen, L.P., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)

    Article  Google Scholar 

  4. Yan, S.Z., Xiang, W., Zhang, L.: A comprehensive model for 3D revolute joints with clearances in mechanical systems. Nonlinear Dyn. 80, 309–328 (2015)

    Article  Google Scholar 

  5. Daniel, G.B., Machado, T.H., Cavalca, K.L.: Investigation on the influence of the cavitation boundaries on the dynamic behavior of planar mechanical systems with hydrodynamic bearings. Mech. Mach. Theory 99, 19–36 (2016)

    Article  Google Scholar 

  6. Li, Y.Y., Chen, G.P., Sun, D.Y., Gao, Y., Wang, K.: Dynamic analysis and optimization design of a planar slider–crank mechanism with flexible components and two clearance joints. Mech. Mach. Theory 99, 37–57 (2016)

    Article  Google Scholar 

  7. Pereira, C., Ambrósio, J.A., Ramalho, A.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015)

    Article  Google Scholar 

  8. Akhadkar, N., Acary, V., Brogliato, B.: Analysis of collocated feedback controllers for four-bar planar mechanisms with joint clearances. Multibody Syst. Dyn. 38, 101–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn 7(031003), 13 (2012)

    Google Scholar 

  10. Varedi, S.M., Daniali, H.M., Dardel, M.: Dynamic synthesis of a planar slider–crank mechanism with clearances. Nonlinear Dyn. 79, 1587–1600 (2015)

    Article  Google Scholar 

  11. Muvengei, O., Kihiu, J., Ikua, B.: Effects of input speed on the dynamic response of planar multibody system with differently located frictionless revolute clearance joints. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 5, 458–467 (2011)

    Google Scholar 

  12. Bai, Z.F., Zhao, Y.: A hybrid contact force model of revolute joint with clearance for planar mechanical systems. Int. J. Non. Linear Mech. 48, 15–36 (2013)

    Article  Google Scholar 

  13. Tian, Q., Cheng, L., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–47 (2011)

    Article  MATH  Google Scholar 

  14. Erkaya, S., Doğan, S., Ulus, Ş.: Effects of joint clearance on the dynamics of a partly compliant mechanism: numerical and experimental studies. Mech. Mach. Theory 88, 125–140 (2015)

    Article  Google Scholar 

  15. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  16. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  17. Flores, P.: Dynamic Analysis of Mechanical Systems with Imperfect Kinematic Joints. Ph.D. Dissertation, Universidade Do Minho (2004)

  18. Zukas, J.A., Nicholas, T., Greszczuk, L.B., Curran, D.R.: Impact Dynamics. Wiley, New York (1982)

    Google Scholar 

  19. Hertz, H.: On the contact of solids—on the contact of rigid elastic solids and on hardness (translated by D. E. Jones and G.A. Schott), miscellaneous papers, Macmillan and Co. Ltd., London, England, pp. 146–183 (1896)

  20. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  21. Alves, J., Peixinho, N., Silva, M.T.D., Flores, P., Lankarani, H.M.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory 85, 172–188 (2015)

    Article  Google Scholar 

  22. Flores, P., Ambrósio, J.A.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004)

    Article  Google Scholar 

  23. Flores, P., Ambrósio, J.A., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006)

    Article  MATH  Google Scholar 

  24. Flores, P., Ambrósio, J.A., Claro, J.C.P., Lankarani, H.M.: Spatial revolute joints with clearances for dynamic analysis of multibody systems. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 220(4), 257–271 (2006)

    Google Scholar 

  25. Flores, P., Ambrósio, J.A., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3, 011007 (2008)

    Article  Google Scholar 

  26. Erkaya, S.: Investigation of joint clearance effects on welding robot manipulators. Robot. Comput. Integr. Manuf. 28, 449–457 (2012)

    Article  Google Scholar 

  27. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    Article  MATH  Google Scholar 

  28. Liu, C.S., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory 42, 183–197 (2007)

    Article  MATH  Google Scholar 

  29. Ma, J., Qian, L.F., Chen, G.S., Li, M.: Dynamic analysis of mechanical systems with planar revolute joints with clearance. Mech. Mach. Theory 94, 148–164 (2015)

    Article  Google Scholar 

  30. Erkaya, S., Uzmay, İ.: Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 58, 179–198 (2009)

    Article  MATH  Google Scholar 

  31. Erkaya, S., Uzmay, İ.: Experimental investigation of joint clearance effects on the dynamics of a slider–crank mechanism. Multibody Syst. Dyn. 24, 81–102 (2010)

    Article  MATH  Google Scholar 

  32. Salahshoor, E., Ebrahimi, S., Maasoomi, M.: Nonlinear vibration analysis of mechanical systems with multiple joint clearances using the method of multiple scales. Mech. Mach. Theory 105, 495–509 (2016)

    Article  Google Scholar 

  33. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar rigid-body mechanical systems with two-clearance revolute joints. Nonlinear Dyn. 73, 259–273 (2013)

    Article  MathSciNet  Google Scholar 

  34. Abdallah, M.A.B., Khemili, I., Aifaoui, N.: Numerical investigation of a flexible slider–crank mechanism with multijoints with clearance. Multibody Syst. Dyn. 38, 173–199 (2016)

    Article  Google Scholar 

  35. Yang, Y.L., Cheng, J.J.R., Zhang, T.Q.: Vector form intrinsic finite element method for planar multibody systems with multiple clearance joints. Nonlinear Dyn. 86, 421–440 (2016)

    Article  MathSciNet  Google Scholar 

  36. Zhang, X.C., Zhang, X.M., Chen, Z.: Dynamic analysis of a \(3-{R}RR\) parallel mechanism with multiple clearance joints. Mech. Mach. Theory 78, 105–115 (2014)

    Article  Google Scholar 

  37. Varedi, S.M., Daniali, H.M., Farajtabar, M., Fathi, B., Shafiee, M.: Reducing the undesirable effects of joints clearance on the behavior of the planar 3-RRR parallel manipulators. Nonlinear Dyn. 86, 1007–1022 (2016)

    Article  Google Scholar 

  38. Varedi, S.M., Daniali, H.M., Dardel, M., Fathi, A.: Optimal dynamic design of a planar slider–crank mechanism with a joint clearance. Mech. Mach. Theory 86, 191–200 (2015)

    Article  Google Scholar 

  39. Yaqubi, S., Dardel, M., Daniali, H.M., Ghasemi, M.H.: Modeling and control of crank–slider mechanism with multiple clearance joints. Multibody Syst. Dyn. 36, 143–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, C., Tian, Q., Hu, H.Y.: Dynamics and control of a spatial rigid-flexiable multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Article  Google Scholar 

  41. Flores, P.: A parametric study on the dynamic response of planar mulibody system with multiple clearance joints. Nonlinear Dyn. 61, 633–653 (2010)

    Article  MATH  Google Scholar 

  42. Antoni, N., Nguyen, Q.S., Ragot, P.: Slip-shakedown analysis of a system of circular beams in frictional contact. Int. J. Solids Struct. 45, 5189–5203 (2008)

    Article  MATH  Google Scholar 

  43. Flicek, R.C., Ramesh, R., Hills, D.A.: A complete frictional contact: the transition from normal load to sliding. Int. J. Eng. Sci. 92, 18–27 (2015)

    Article  Google Scholar 

  44. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst. Dyn. 28, 369–393 (2012)

    Article  MathSciNet  Google Scholar 

  45. Chen, Y., Sun, Y., Chen, C.: Dynamic analysis of a planar slider–crank mechanism with clearance for a high speed and heavy load press system. Mech. Mach. Theory 98, 81–100 (2016)

    Article  Google Scholar 

  46. Zheng, E.L., Zhou, X.L.: Modeling and simulation of flexible slider–crank mechanism with clearance for a closed high speed press system. Mech. Mach. Theory 74, 10–30 (2014)

    Article  Google Scholar 

  47. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86, 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  48. Wang, Z., Tian, Q., Hu, H.Y., Flores, P.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86, 1571–1597 (2016)

    Article  Google Scholar 

  49. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T., Sawyer, W.G.: Comparison between elastic foundation and contact force models in wear analysis of planar multibody system. J. Tribol. 132, 013604 (2010)

    Article  Google Scholar 

  50. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T., Sawyer, W.G.: Analysis of planar multibody systems with revolute joint wear. Wear 268, 643–652 (2010)

    Article  Google Scholar 

  51. Flores, P., Ambrósio, J.A., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 41, 247–261 (2006)

    Article  MATH  Google Scholar 

  52. Gummer, A., Sauer, B.: Modeling planar slider–crank mechanisms with clearance joints in RecurDyn. Multibody Syst. Dyn. 31, 127–145 (2014)

    Article  Google Scholar 

  53. Lopes, D.S., Silva, M.T., Ambrósio, J.A., Flores, P.: A mathematical framework for rigid contact detection between quadric and superquadric surfaces. Multibody Syst. Dyn. 24, 255–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Flores, P., Ambrósio, J.A.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Doves Publications, London (1965)

    MATH  Google Scholar 

  56. Greenwood, D.T.: Principles of Dynamics. Prentice Hall, Englewood Cliffs (1965)

    Google Scholar 

  57. Schmitz, T.L., Action, J.E., Ziegert, J.C., Sawyer, W.G.: The difficulty of measuring low friction: uncertainty analysis for friction coefficient measurements. J. Tribol. 127, 673–678 (2005)

    Article  Google Scholar 

  58. Antoni, N., Ligier, J.L., Saffré, P., Pastor, J.: Asymmetric friction: modelling and experiments. Int. J. Eng. Sci. 45, 587–600 (2007)

    Article  Google Scholar 

  59. Koshy, C.S., Flores, P., Lankarani, H.M.: Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: computational and experimental approaches. Nonlinear Dyn. 73, 325–338 (2013)

    Article  Google Scholar 

  60. Kermani, M.R., Patel, R.V., Moallem, M.: Friction identification in robotic manipulators: case studies. In: Proceedings of IEEE Conference on Control Applications, pp. 1170–1175 (2005)

  61. Ju, C.K.: Modeling friction phenomenon and elastomeric dampers in multi-body dynamics analysis. Ph.D. thesis, Georgia Institute of Technology (2009)

  62. Canudas, C., Lischinsky, P.: Adaptive friction compensation with partially known dynamic friction model. Int. J. Adapt. Control Signal Process. 11, 65–80 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  63. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  64. Flores, P., Machado, M., Seabra, E., Silva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. ASME J. Comput. Nonlinear Dyn. 6, 011019–9 (2011)

    Article  Google Scholar 

  65. Flores, P., Ambrósio, J.A., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  66. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998)

    Article  MATH  Google Scholar 

  67. Olyaei, A.A., Ghazavi, M.R.: Stabilizing slider–crank mechanism with clearance joints. Mech. Mach. Theory 53, 17–29 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to the editor and anonymous reviewers for their useful comments and suggestions which help substantially improve the manuscript. The warmhearted and valuable advice of Professor Paulo Flores from the University of Minho regarding the structure and overall description of the paper is highly appreciated. The research work presented in this paper was supported by National Natural Science Foundation of China [Grant numbers: 11472137]. The innovation of graduate student training project in Jiangsu province [Grant numbers: KYLX16_0488] is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linfang Qian.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Human and animals participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Qian, L. Modeling and simulation of planar multibody systems considering multiple revolute clearance joints. Nonlinear Dyn 90, 1907–1940 (2017). https://doi.org/10.1007/s11071-017-3771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3771-z

Keywords

Navigation