Skip to main content
Log in

Unified Riccati equation expansion method and its application to two new classes of Benjamin–Bona–Mahony equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Bäcklund transformations and the superposition formulas of the Riccati equation with constant coefficients are constructed. Two fractional type solutions of the Riccati equation are obtained from its Bäcklund transformations. The equivalence relations between fractional solutions and previous known solutions are proved. A so-called unified Riccati equation expansion method for generating infinite number of exact traveling wave solutions for nonlinear evolution equations is then developed on the basis of the fractional solutions. With the method, infinitely many exact traveling wave solutions of two new classes of Benjamin–Bona–Mahony equations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malfliet, W.: Solitary wave solutions of nonlinear wave equation. Am. J. Phys. 60, 650–654 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, M.L.: The \(G^\prime /G\)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  5. Zayed, E.M.E., Abdelaziz, M.A.M.: Applications of a generalized extended (\(G^\prime /G\))-expansion method to find exact solutions of two nonlinear Schrödinger equations with variable coefficients. Acta Phys. Pol. A 121, 573–580 (2012)

    Article  Google Scholar 

  6. Sirendaoreji.: A generalization of the (\(G^\prime /G\))-expansion method and its application. J. Northwest Norm. Univ. 52, 24–26 (2016)

  7. Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Parkes, E.J., Duffy, B.R., Abbott, P.C.: The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A 295, 280–286 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Abdelrahman, M.A.E., Zahran, E.H.M., Khater, M.M.A.: The \(\exp (-\varphi (\xi ))\)-expansion method and its application for solving nonlinear evolution equations. Int. J. Mod. Nonlinear Theor. Appl. 4, 37–47 (2015)

    Article  Google Scholar 

  11. Shehata, M.S.M.: The \(\exp (-\varphi (\xi ))\) method and its applications for solving some nonlinear evolution equations in mathematical physics. Am. J. Comput. Math. 5, 468–480 (2015)

    Article  MathSciNet  Google Scholar 

  12. Sirendaoreji, Sun J.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309, 387–396 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sirendaoreji.: New exact traveling wave solutions for the Kawahara and the modified Kawahara equations. Chaos Solitons Fractals 19, 147–150 (2004)

  14. Triki, H., Wazwaz, A.M.: On soliton solutions for the Fitzhugh–Nagumo equation with time-dependent coefficients. Appl. Math. Model. 37, 3821–3828 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abdou, M.A., Abd ElGawad, S.S.: A series of traveling wave solutions for nonlinear evolution equations arising in physics. Int. J. Nonlinear Sci. 9, 139–150 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, S.: A generalized auxiliary equation method and its application to (2+1)-dimensional Korteweg-de Vries equations. Comput. Math. Appl. 54, 1028–1038 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, G.Q.: Extended auxiliary equation method and its applications to three generalized NLS equations. Abstr. Appl. Anal. 2014(2014), 1–7 (2014)

    MathSciNet  Google Scholar 

  18. Yu, J.P., Wang, D.S., Sun, Y.L., Wu, S.P.: Modified method of simplest equation for obtaining exact solutions of the Zakharov–Kuznetsov equation, the modified Zakharov–Kuznetsov equation, and their generalized forms. Nonlinear Dyn. 85, 2449–2465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng, Y.Z.: Exact solutions for the generalized variable-coefficient KdV equation. Fiz. A 12, 9–14 (2003)

    Google Scholar 

  20. Zhu, S.D.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37, 1335–1342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Z.T., Dai, Z.D.: Abundant new exact solutions for the (3+1)-dimensional Jimbo–Miwa equation. J. Math. Anal. Appl. 361, 587–590 (2010)

  22. Guo, S., Mei, L., Zhou, Y., Li, C.: The extended Riccati equation mapping method for variable coefficient diffusion-reaction and mKdV equations. Appl. Math. Comput. 217, 6264–6272 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Guo, S.M., Mei, L.Q., Zhou, Y.B., Li, C.: The extended Riccati equation mapping method for variable-coefficient diffusion-reaction and mKdV equations. Appl. Math. Comput. 217, 6264–7272 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Naher, H., Abdullah, F. A.: New traveling wave solutions by the extended generalized Riccati equation mapping method of the (2+1)-dimensional evolution equation. J. Appl. Math. 2012, 18 (2012). doi:10.1155/2012/486458

  25. Kolebaje, O.T., Akinyemi, P., Obende, M.: Travelling wave solutions of the generalized Zakharov–Kuznetsov equation via the extended generalized Riccati equation mapping method. Int. J. Adv. Math. 1, 1–7 (2013)

    Google Scholar 

  26. Kong, L.Q., Dai, C.Q.: Some discussions about variable separation of nonlinear models using Riccati equation expansion method. Nonlinear Dyn. 81, 1553–1561 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zhou, Q.: Soliton and soliton-like solutions to the modified Zakharov–Kuznetsov equation in nonlinear transmission line. Nonlinear Dyn. 83, 1429–1435 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Malwe, B.H., Betchewe, G., Doka, S.Y., Kofane, T.C.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84, 171–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, S.X., Fan, X.H.: Travelling wave solutions of the OS–BBM equation by the simplified \(G^\prime /G\)-expansion method. Int. J. Nonlinear Sci. 12, 54–59 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Alquran, M.: Bright and dark soliton solutions to the Ostrovsky–Benjamin–Bona–Mahony (OS–BBM) equation. J. Math. Comput. Sci. 2, 15–22 (2012)

    MathSciNet  Google Scholar 

  31. Younis, M., Ali, S.: New applications to solitary wave ansatz. Appl. Math. 5, 969–974 (2014)

    Article  Google Scholar 

  32. Abazari, R.: On the exact solitary wave solutions of a special class of Benjamin–Bona–Mahony equation. Comput. Math. Math. Phys. 53, 1371–1376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant Nos. 1261037 and 11361040, and by the “Ten, Hundred, Thousand” Talent Training Project of Inner Mongolia Normal University under Grant No. RCPY-2-2012-K-033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirendaoreji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirendaoreji Unified Riccati equation expansion method and its application to two new classes of Benjamin–Bona–Mahony equations. Nonlinear Dyn 89, 333–344 (2017). https://doi.org/10.1007/s11071-017-3457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3457-6

Keywords

Navigation