Skip to main content
Log in

Extended \(({\frac{G^{\prime }}{G}})\)-Expansion Method for Konopelchenko–Dubrovsky (KD) Equation of Fractional Order

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we explore new applications of the extended \(({\frac{G^{\prime }}{G}})\)-expansion method. We apply this method to the nonlinear Konopelchenko–Dubrovsky equation of fractional order. As results, some new exact traveling wave solutions are obtained which include solitary wave solutions. The travelling wave solutions are expressed by hyperbolicand trigonometric functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, M.L., Zhou, Y.B., Li, Z.B.: Application of homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    Article  MATH  Google Scholar 

  2. Zayed, E.M.E., Zedan, H.A., Gepreel, K.A.: On the solitary wave solutions for nonlinear Hirota–Satsuma coupled KdV equations. Chaos Solitons Fractals 22, 285–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Yang, L., Liu, J., Yang, K.: Exact solutions of nonlinear PDE, nonlinear transformations and reduction of nonlinear PDE to aquadrature. Phys. Lett. A 278, 267–270 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zayed, E.M.E., Zedan, H.A., Gepreel, K.A.: On the solitary wave solutions for nonlinear Euler equations. Appl. Anal. 83, 1101–1132 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kudryashov, N.A.: Exact solutions of the generalized KuramotoSivashinsky equation. Phys. Lett. A 147, 287 (1990)

    Article  MathSciNet  Google Scholar 

  6. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Parkes, E.J., Duffy, B.R.: Travelling solitary wave solutions to a compound KdV-Burgers equation. Comput. Phys. Commun. 98, 288 (1996)

    Article  MATH  Google Scholar 

  8. Yan, Z.Y.: New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations. Phys. Lett. A 292, 100–106 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonnian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chow, K.W.: A class of exact, periodic solutions of nonlinear envelope equations. J. Math. Phys. 36, 4125–4137 (1995). 13

    Article  MATH  MathSciNet  Google Scholar 

  11. Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fan, E.G.: Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method. J. Phys. A 35, 6853–6872 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hu, J.L.: A new method of exact travelling wave solution for coupled nonlinear differential equations. Phys. Lett. A 322, 211–216 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hirota, R.: Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. Math. Phys 14, 810–816 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 85, 407–408 (1981)

    Article  MathSciNet  Google Scholar 

  16. Porubov, A.V.: Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer. Phys. Lett. A 221, 391 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, M.L., Zhou, Y.B.: The periodic wave solutions for the Klein–Gordon–Schrodinger equations. Phys. Lett. A 318, 84 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, M.L., Li, X.: Extended F-expansion and periodic wave solutions for the generalized Zakharov equations. Phys. Lett. A 343, 48–54 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, M.L., Li, X.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ablowitz, M.J., Clarkson, P.A.: Solittons, Nonlinear Evolution Equations and Inverse. Scattering Transform. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  21. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Inc, M., Evans, D.J.: On traveling wave solutions of some nonlinear evolution equations. Int. J. Comput. Math. 81, 191 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: New Jacobi elliptic function expansion and new wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yan, Z.Y.: Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fractals 18, 299 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zayed, E.M.E., Zedan, H.A., Gepreel, K.A.: A modified extended method to find a series of exact solutions for a system of complex coupled KdV equations. Appl. Anal. 84, 523–541 (2005). 14

    Article  MATH  MathSciNet  Google Scholar 

  26. Zayed, E.M.E., Abourabia, A.M., Gepreel, K.A., Horbaty, M.M.: Traveling solitary wave solutions for nonlinear coupled KdV system. Chaos Solitons Fractals 34, 292–306 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Miura, M.R.: Backlund Transformation. Springer, Berlin (1978)

    Google Scholar 

  28. Rogers, C., Shadwick, W.F.: Backlund Transformation. Academic, New York (1982)

    MATH  Google Scholar 

  29. Yan, Z., Zhang, H.Q.: New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water. Phys. Lett. A 285, 355–362 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, M.L., Li, X.Z., Zhang, J.L.: The expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yan, Z.Y., Zhang, H.Q.: New explicit and exact travelling wave solutions for a system of variant Boussinesq equation in mathematical physics. Phys. Lett. A 252, 291–296 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, X.Z., Wang, M.L.: A sub-ODE method for finding exact solutions of a generalized KdV–mKdV equation with high-order nonlinear terms. Phys. Lett. A 361, 115–118 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, M.L., Li, X.Z., Zhang, J.L.: Sub-ODE method and solitary wave solutions for higher order nonlinear Schrodinger equation. Phys. Lett. A 363, 96–101 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Guo, S., Zhou, Y.: The extended \(( {\frac{G^{\prime }}{G}})\)-expansion method and its applications to the Whitham–Broer–Kaup–Like equations and coupled Hirota–Satsuma KdV equations. Appl. Math. Comput. 215, 3214–3221 (2010)

    MATH  MathSciNet  Google Scholar 

  35. Zayed, E.M.E., Al-Joudi, S.: Applications of an extended \(({\frac{G^{\prime }}{G}} )\)-expansion method to find exact solutions of nonlinear PDEs in mathematical physics. Math. Probl. Eng. 2010(768573), 19 (2010)

    MATH  MathSciNet  Google Scholar 

  36. Hayek, M.: Constructing of exact solutions to the KdV and Burgers equations with power-law nonlinearity by the extended \(({\frac{G^{\prime }}{G}} )\)-expansion method. Appl. Math. Comput. 217, 212–221 (2010)

    MATH  MathSciNet  Google Scholar 

  37. Luchko, A.Y., Groreflo, R.: The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A08-98, Fachbreich Mathematik und Informatik, FreicUniversitat Berlin (1998)

  38. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  39. Oldhamand, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    Google Scholar 

  40. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Part II. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  41. Li, Z.B., He, J.H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15, 970–973 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the unknown referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tauseef Mohyud-Din.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohyud-Din, S.T., Saba, F. Extended \(({\frac{G^{\prime }}{G}})\)-Expansion Method for Konopelchenko–Dubrovsky (KD) Equation of Fractional Order. Int. J. Appl. Comput. Math 3 (Suppl 1), 161–172 (2017). https://doi.org/10.1007/s40819-017-0347-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0347-z

Keywords

Navigation