Skip to main content
Log in

Some discussions about variable separation of nonlinear models using Riccati equation expansion method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the Riccati equation expansion method with radical sign combined ansatz, nine kinds of variable separation solutions with different forms of (3+1)-dimensional Burgers equation are constructed. From these different solutions constructed by the Riccati equation expansion method, we confirm that these seem independent solutions exist some relations and actually depend on each other. Moreover, we discuss the construction of localized excitation based on variable separation solutions. Results indicate that for the (3+1)-dimensional two- or multi-component system, when we construct localized coherent structures for a special component based on variable separation solutions, we must note the corresponding structures constructed by the other component for the same equation for some nonlinear models in order to avoid the appearance of some divergent and un-physical structures. We hope that these results have potential application for the deep study of exact solutions of nonlinear models in physical, engineering and biophysical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lu, X., Peng, M.: Painleve-integrability and explicit solutions of the general two-coupled nonlinear Schrodinger system in the optical fiber communications. Nonlinear Dyn. 73, 405–410 (2013)

    Article  MathSciNet  Google Scholar 

  2. Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrodinger’s equation. Nonlinear Dyn. 63, 623–626 (2011)

    Article  MathSciNet  Google Scholar 

  3. Biswas, A.: Solitary waves for power-law regularized long-wave equation and R(m, n) equation. Nonlinear Dyn. 59, 423–426 (2010)

    Article  Google Scholar 

  4. Chen, Y.X.: Sech-type and Gaussian-type light bullet solutions to the generalized (3+1)-dimensional cubic–quintic Schrodinger equation in PT-symmetric potentials. Nonlinear Dyn. 79, 427–436 (2015)

    Article  Google Scholar 

  5. Zhu, H.P.: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion. Nonlinear Dyn. 76, 1651–1659 (2014)

    Article  Google Scholar 

  6. Wu, X.F., Hua, G.S., Ma, Z.Y.: Evolution of optical solitary waves in a generalized nonlinear Schrodinger equation with variable coefficients. Nonlinear Dyn. 70, 2259–2267 (2012)

    Article  MathSciNet  Google Scholar 

  7. Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)

    Article  Google Scholar 

  8. Chen, H.Y., Zhu, H.P.: Controllable behaviors of spatiotemporal breathers in a generalized variable-coefficient nonlinear Schrodinger model from arterial mechanics and optical fibers. Non-linear Dyn. (2015). doi:10.1007/s11071-015-1978-4

  9. Wang, S., Tang, X.Y., Lou, S.Y.: Soliton fission and fusion: Burgers equation and Sharma–Tasso–Olver equation. Chaos Solitons Fractals 21, 231–239 (2004)

    Article  MathSciNet  Google Scholar 

  10. Wang, W., Roberts, A.J.: : Diffusion approximation for self-similarity of stochastic advection in Burgers’ equation. Commun. Math. Phys. 333, 1287–1316 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, Y., Wang, Q.: Exact complexiton solutions of the (2+1)-dimensional Burgers equation. Z. Naturforsch. A 60, 673–680 (2005)

    Google Scholar 

  12. Ma, Z.Y., Fei, J.X., Chen, Y.M.: The residual symmetry of the (2+1)-dimensional coupled Burgers equation. Appl. Math. Lett. 37, 54–60 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dai, C.Q.: Semifoldons with fusion and fission properties of (2+1)-dimensional nonlinear system. Chaos Solitons Fractals 38, 474–480 (2008)

    Article  Google Scholar 

  14. Dai, C.Q., Liu, F.Q., Zhang, J.F.: Novel types of interactions between solitons in the (2+1)-dimensional asymmetric Nizhnik–Novikov–Veselov system. Chaos Soliton Fractals 36, 437–445 (2008)

    Article  MathSciNet  Google Scholar 

  15. Dai, C.Q., Chen, R.P.: Solitons with fusion and fission properties in the (2+1)-dimensional modified dispersive water-wave system. Z. Naturforsch. A 61, 307–315 (2006)

    Google Scholar 

  16. Zhu, H.P., Zheng, C.L.: Embed-solitons and their evolutional behaviors of (3+1)-dimensional Burgers system. Commun. Theor. Phys. 48, 57–62 (2007)

    Article  MathSciNet  Google Scholar 

  17. Zheng, C.L., Zhu, H.P.: Exact solutions and localized excitations of Burgers system in (3+1) dimensions. Z. Naturforsch. A 66, 383–391 (2011)

    Article  Google Scholar 

  18. Zhu, S.D.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti-Leon-Pempinelle equation. Chaos Solitons Fractals 37, 1335–1342 (2008)

    Article  MathSciNet  Google Scholar 

  19. Zhang, W.L., Ma, S.H., Chen, J.J.: Complex wave solutions and localized excitations of (2+1)-dimensional korteweg-de Vries system. Acta Phys. Sin. 63, 080506 (2014)

    Google Scholar 

  20. Lin, Z.F., Ma, S.H.: New exact solutions and complex wave excitations for the (2+1)-dimensional dispersive long wave equation. Acta Phys. Sin. 63, 040508 (2014)

    Google Scholar 

  21. Zhu, W.T., Ma, S.H., Fang, J.P., Ma, Z.Y., Zhu, H.P.: Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff system. Chin. Phys. B 23, 060505 (2014)

    Article  Google Scholar 

  22. Kudryashov, N.A., Ryabov, P.N., Sinelshchikov, D.I.: Comment on: application of the (G\(^{\prime }\)/G) method for the complex KdV equation [Huiqun Zhang, Commun Nonlinear Sci Numer Simulat 15, 2010, 1700–1704]. Commun. Nonlinear Sci. Numer. Simul. 16, 596–598 (2011)

  23. Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equa-tions. Commun. Nonlinear Sci. Numer. Simul. 14, 3507–3529 (2009)

    Article  MathSciNet  Google Scholar 

  24. Kudryashov, N.A.: On new travelling wave solutions of the KdV and the KdV-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 14, 1891–1900 (2009)

    Article  MathSciNet  Google Scholar 

  25. Parkes, E.J.: Observations on the basic (G’/G)-expansion method for finding solutions to nonlinear evolution equations. Appl. Math. Comput. 217, 1759–1763 (2010)

    Article  MathSciNet  Google Scholar 

  26. Parkes, E.J.: Observations on the tanh-coth expansion method for finding solutions to nonlinear evolution equations. Appl. Math. Comput. 217, 1749–1754 (2010)

    Article  MathSciNet  Google Scholar 

  27. Parkes, E.J.: A note on solitary travelling-wave solutions to the transformed reduced Ostrovsky equation. Commun. Nonlinear Sci. Numer. Simul. 15, 2769–2771 (2010)

  28. Dai, C.Q., Zhang, J.F.: Novel variable separation solutions and localized excitations via the ETM in nonlinear soliton systems. J. Math. Phys. 47, 043501 (2006)

    Article  MathSciNet  Google Scholar 

  29. Dai, C.Q., Zhang, J.F.: New types of interactions based on variable separation solutions via the general projective Riccati equation method. Rev. Math. Phys. 19, 195–226 (2007)

    Article  MathSciNet  Google Scholar 

  30. Ruan, H.Y.: Some discussions about the variable separating method for solving nonlinear models. Chin. Phys. B 19, 050204 (2010)

    Article  Google Scholar 

  31. Yin, J.P., Lou, S.Y.: Multilinear variable separation approach in (3+1)-dimensions: the Burgers equation. Chin. Phys. Lett. 20, 1448 (2003)

    Article  Google Scholar 

  32. Lou, S.Y., Yu, J., Tang, X.Y.: Higher dimensional integrable models from lower ones via Miura type deformation relation. Z. Naturforsch. A 55, 867–876 (2000)

    Google Scholar 

  33. Dai, C.Q., Meng, J.P., Zhang, J.F.: Symbolic computation of extended Jacobian elliptic function algorithm for nonlinear differential-different equations. Commun. Ther. Phys. 43, 471–478 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY13F050006), the National Natural Science Foundation of China (Grant No. 11375007), and the Scientific Research and Developed Fund of Zhejiang A & F University (Grant No. 2014FR020). Dr. Chao-Qing Dai is also sponsored by the Foundation of New Century “151 Talent Engineering” of Zhejiang Province of China and Youth Top-notch Talent Development and Training Program of Zhejiang A & F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Qing Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, LQ., Dai, CQ. Some discussions about variable separation of nonlinear models using Riccati equation expansion method. Nonlinear Dyn 81, 1553–1561 (2015). https://doi.org/10.1007/s11071-015-2089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2089-y

Keywords

Navigation