Skip to main content
Log in

Modified method of simplest equation for obtaining exact solutions of the Zakharov–Kuznetsov equation, the modified Zakharov–Kuznetsov equation, and their generalized forms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we study the application of a version of the method of simplest equation for obtaining exact traveling wave solutions of the Zakharov–Kuznetsov equation, the modified Zakharov–Kuznetsov equation, and their generalized forms. The Duffing-type equation is used as simplest auxiliary equation. In the meantime, the proposed method is proved to be a powerful mathematical tool for obtaining exact solutions of nonlinear partial differential equations in mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, W.X., Gu, X., Gao, L.: A note on exact solutions to linear differential equations by the matrix exponential. Adv. Appl. Math. Mech. 1, 573–580 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Non-Linear Mech. 31, 329–338 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vitanov, N.K., Dimitrova, Z.I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg–deVries equation and generalized Camassa–Holm equation. Appl. Math. Comput. 219, 7480–7492 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Huang, Y.: Exact multi-wave solutions for the KdV equation. Nonlinear Dyn. 77, 437–444 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Vitanov, N.K.: Solitary wave solutions for nonlinear partial differential equations that contain monomials of odd and even grades with respect to participating derivatives. Appl. Math. Comput. 247, 213–217 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Wang, D.S., Li, H.B.: Symbolic computation and non-travelling wave solutions of \((2+1)\)-dimensional nonlinear evolution equations. Chaos Solitons Fract. 38, 383–390 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, D.S., Hu, X.H., Hu, J.P., Liu, W.M.: Quantized quasi-two-dimensional Bose–Einstein condensates with spatially modulated nonlinearity. Phys. Rev. A 81, 025604 (2010)

    Article  Google Scholar 

  8. Wang, D.S., Zeng, X., Ma, Y.Q.: Exact vortex solitons in a quasi-two-dimensional Bose–Einstein condensate with spatially inhomogeneous cubic–quintic nonlinearity. Phys. Lett. A 376, 3067–3070 (2012)

    Article  Google Scholar 

  9. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91(3), 033202 (2015)

    Article  MathSciNet  Google Scholar 

  10. Xu, T., Li, M., Li, Lu: Anti-dark and Mexican-hat solitons in the Sasa–Satsuma equation on the continuous wave background. Europhys. Lett. 109(3), 30006 (2015)

    Article  Google Scholar 

  11. Tian, S.F., Zhang, T.T., Ma, P.L., Zhang, X.Y.: Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach. J. Nonlinear Math. Phys. 22(2), 180–193 (2015)

    Article  MathSciNet  Google Scholar 

  12. Lu, X.: Soliton behavior for a generalized mixed nonlinear Schrödinger model with N-fold Darboux transformation. Chaos 23, 033137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma, W.X., Lee, J.-H.: A transformed rational function method and exact solutions to the \(3+1\) dimensional Jimbo–Miwa equation. Chaos Solitons Fract. 42, 1356–1363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, W.X., Liu, Y.P.: Invariant subspaces and exact solutions of a class of dispersive evolution equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3795–3801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, M.L.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 199, 169–172 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, M.L., Zhou, Y.B., Li, Z.B.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    Article  MATH  Google Scholar 

  17. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhou, Y.B., Wang, M.L., Wang, Y.M.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, L.L.: Formally variable separation approach and new exact solutions of generalized Hirota–Satsuma equations. Acta Phys. Sin. 48, 2149–2153 (1999)

    MATH  Google Scholar 

  20. Chen, Y., Li, Y.S.: The constraint of the Kadomtsev–Petviashvili equation and its special solutions. Phys. Lett. A 157, 22–26 (1991)

    Article  MathSciNet  Google Scholar 

  21. Lou, S.Y., Lu, J.Z.: Special solutions from the variable separation approach: the Davey–Stewartson equation. J. Phys. A 29, 4209–4215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeng, Y.B.: An approach to the deduction of the finite-dimensional integrability from the infinite-dimensional integrability. Phys. Lett. A 160, 541–547 (1991)

    Article  MathSciNet  Google Scholar 

  23. Conte, R., Musett, M.: Link between solitary waves and projective Riccati equations. J. Phys. A 25, 5609–5623 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zedan, H.A., Alaidarous, E., Shapll, S.: Exact solutions for a perturbed nonlinear Schrödinger equation by using Bäcklund transformations. Nonlinear Dyn 74, 1153 (2013)

    Article  MathSciNet  Google Scholar 

  25. Liu, N.: Bäcklund transformation and multi-soliton solutions for the \((3+1)\)-dimensional BKP equation with Bell polynomials and symbolic computation. Nonlinear Dyn. 82, 311–318 (2015)

    Article  Google Scholar 

  26. Feng, X.: Exploratory approach to explicit solution of nonlinear evolution equations. Int. J. Theor. Phys. 39, 207–222 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fu, Z.T., Liu, S.D., Liu, S.K., Zhao, Q.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290, 72–76 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fu, Z.T., Liu, S.D., Liu, S.K.: New kinds of solutions to Gardner equation. Chaos Solitons Fract. 20, 301–309 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma, W.X., Huang, T.W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)

    Article  MATH  Google Scholar 

  30. Li, J.B., Chen, F.J.: Exact traveling wave solutions and bifurcations of the dual Ito equation. Nonlinear Dyn. 82, 1537–1550 (2015)

    Article  MathSciNet  Google Scholar 

  31. Pereira, P.J.S., Lopes, N.D., Trabucho, L.: Soliton-type and other travelling wave solutions for an improved class of nonlinear sixth-order Boussinesq equations. Nonlinear Dyn. 82, 783–818 (2015)

    Article  MathSciNet  Google Scholar 

  32. Li, S.Y., Liu, Z.R.: Kink-like wave and compacton-like wave solutions for generalized KdV equation. Nonlinear Dyn. 79, 903–918 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gupta, R.K., Kumar, V., Jiwari, R.: Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients. Nonlinear Dyn. 79, 455–464 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kudryashov, N.A.: Exact soliton solutions of the generalized evolution equation of wave dynamics. J. Appl. Math. Mech. 52, 361–365 (1988)

    Article  MathSciNet  Google Scholar 

  35. Kudryashov, N.A.: On types of nonlinear non integrable differential equations with exact solutions. Phys. Lett. A 155, 269–275 (1991)

    Article  MathSciNet  Google Scholar 

  36. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vitanov, N.K., Dimitrova, Z.I., Vitanov, K.N.: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications. Appl. Math. Comput. 269, 363–378 (2015)

    MathSciNet  Google Scholar 

  38. Hassan a, M.M., Abdel-Razek b, M.A., Shoreh c, A.A.-H.: Explicit exact solutions of some nonlinear evolution equations with their geometric interpretations. Appl. Math. Comput. 251, 243–252 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Ryabov, P.N., Sinelshchikov, D.I., Kochanov, M.B.: Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations. Appl. Math. Comput. 218, 3965–3972 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Kabir, M.M., Khajeh, A., Aghdam, A,E.A., YousefiKoma, A.: Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations. Math. Methods Appl. Sci. 34, 213–219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vitanov, N.K., Dimitrova, I.Z.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model partial differential equations from ecology and population dynamics. Commun. Nonlinear Sci. Numer. Simul. 15, 2836–2845 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sirendaoreji: Auxiliary equation method and new solutions of Klein–Gordon equations. Chaos Solitons Fract. 31, 943–950 (2007)

  43. Vitanov, N.K.: Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of partial differential equations with polynomial nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 2050–2060 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vitanov, N.K., Dimitrova, Z.I., Kantz, H.: Modified method of simplest equation and its application to nonlinear partial differential equations. Appl. Math. Comput. 216, 2587–2595 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Biswas, A.: 1-soliton solution of the generalized Zakharov–Kuznetsov equation with nonlinear dispersion and time-dependent coefficients. Phys. Lett. A 373, 2931–2934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Biswas, A., Zerrad, E., Gwanmesia, J., Khouri, R.: 1-soliton solution of the generalized Zakharov equation in plasmas by he’s variational principle. Appl. Math. Comput. 215, 4462–4466 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput 247, 30C46 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59, 433–442 (2014)

    Google Scholar 

  49. Bhrawy, A.H., Abdelkawy, M.A., Biswas, Anjan: Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics. Indian J. Phys. 87, 1125–1131 (2013)

    Article  Google Scholar 

  50. Bhrawy, A.H.: A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Appl. Math. Comput. 222, 255–264 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo (2015). doi:10.1007/s10092-014-0132-x

    MathSciNet  MATH  Google Scholar 

  52. Bhrawy, A.H.: A jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, numerical algorithms. Numer. Algorithms. doi:10.1007/s11075-015-0087-2

  53. Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multidimensional time fractional schrodinger’s equation. Nonlinear Dyn. doi:10.1007/s11071-015-2588-x

  54. Bhrawy, A.H.: A new spectral algorithm for a time-space fractional partial differential equations with subdiffusion and superdiffusion. Proc. Rom. Acad. A 17, 39–46 (2016)

    MathSciNet  Google Scholar 

  55. Zakeri, G.A., Yomba, E.: Exact solutions of a generalized autonomous Duffing-type equation. Appl. Math. Mod. 39, 4607–4616 (2015)

    Article  MathSciNet  Google Scholar 

  56. Wang, H., Chung, K.W.: Analytical solutions of a generalized Duffing-harmonic oscillator by a nonlinear time transformation method. Phys. Lett. A 376, 1118–1124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Marinca, V., Herisanu, N.: Explicit and exact solutions to cubic Duffing and double-well Duffing equations. Math. Comput. Model. 53, 604–609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zakharov, V.E., Kuznetsov, E.A.: On three-dimensional solitons. Sov. Phys. 39, 285–288 (1974)

    Google Scholar 

  59. Schamel, H.: A modified Korteweg–de-Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9, 377–387 (1973)

    Article  Google Scholar 

  60. Monro, S., Parkes, E.J.: Stability of solitary-wave solutions to a modified Zakharov–Kuznetsov equation. J. Plasma Phys. 64, 411–426 (2000)

    Article  Google Scholar 

  61. Monro, S., Parkes, E.J.: The derivation of a modified Zakharov–Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62, 305–317 (1999)

    Article  Google Scholar 

  62. Ma, H.C., Yu, Y.D., Ge, D.J.: the auxiliary equation method for solving the Zakharov–Kuznetsov (ZK) equation. Comput. Math. Appl. 58, 2523–2527 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

All the authors deeply appreciate all the anonymous reviewers for their helpful and constructive suggestions, which can help improve this paper further. This work is supported by the National Natural Science Foundation of China (Nos. 11101029, 11271362 and 11375030), the Fundamental Research Funds for the Central Universities, Beijing City Board of Education Science and Technology Key Project No. KZ201511232034, Beijing Nova program No. Z131109000413029, and Beijing Finance Funds of Natural Science Program for Excellent Talents No. 2014000026833ZK19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Wang, DS., Sun, Y. et al. Modified method of simplest equation for obtaining exact solutions of the Zakharov–Kuznetsov equation, the modified Zakharov–Kuznetsov equation, and their generalized forms. Nonlinear Dyn 85, 2449–2465 (2016). https://doi.org/10.1007/s11071-016-2837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2837-7

Keywords

Navigation