Skip to main content
Log in

Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate exact soliton solutions to a nonlinear transmission line. Using a concise and simple method known as the generalized Riccati equation mapping method, we solve a continuous nonlinear model associated with the previous nonlinear transmission line. As a result, we obtain miscellaneous travelling wave solutions including trigonometric, hyperbolic, and rational functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sekulic, D.L., Satoric, M.V., Zivanov, M.B., Bajic, J.S.: Soliton-like pulses along electrical nonlinear transmission line. Elecron. Electr. Eng. 121, 53–58 (2012)

    Google Scholar 

  2. Pelap, F.B., Faye, M.: Solitonlike excitations in a one-dimensional electrical transmission line. J. Math. Phys. 46, 033502-1 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Marquié, P., Bibault, J.M., Remoissenet, M.: Observation of nonlinear localized modes in an electrical lattice. Phys. Rev. E 51, 6127 (1995)

    Article  Google Scholar 

  4. Kenmogne, F., Yemele, D.: Bright and peaklike pulse solitary waves and analogy with modulational instability in an extended nonlinear Schrdinger equation. Phys. Rev. E 88, 043204-1 (2013)

    Article  Google Scholar 

  5. Abdoulkary, S., Mohamadou, A., Beda, T.: Exact traveling discrete Kink-soliton solutions for the discrete nonlinear electrical transmission lines. Commun. Nonlinear. Sci. Simul. 16, 3525–3532 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Russell, J.S.: ’Report on Waves’. In: Report of the Fourteenth Meeting of the British Association for the Advancement of Science, pp. 311–90. Plates XLVII-LVII, York, Sept. (1844) (London, 1845)

  7. Drazin, P.G., Johnson, R.S.: Solitons. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  8. Tailor, J.R.: Optical Solitons Theory and Experiment. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  9. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Remoissenet, M.: Waves Called Solitons: Concepts and Experiments. Springer-Verlag, Berlin (1994)

    Book  MATH  Google Scholar 

  11. Hirota, R., Suzuki, K.: Theoretical and experimental studies of solitons in non-linear lumped networks. Proc. IEEE. 61, 1483–1491 (1973)

    Article  Google Scholar 

  12. Nagashima, H., Amagishi, Y.: Experiment on the Toda lattice using nonlinear transmission lines. J. Phys. Soc. Jpn. 45, 680–688 (1978)

    Article  Google Scholar 

  13. Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431–436 (1967)

    Article  Google Scholar 

  14. Toda, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Jpn. 23, 501–506 (1967)

    Article  Google Scholar 

  15. Marquié, P., Bilbault, J.M., Remoissenet, M.: Generation of envelope and hole solitons in an experimental transmission line. Phys. Rev. E 49, 828–835 (1994)

    Article  Google Scholar 

  16. Yemele, D., Marquié, P., Bilbault, J.M.: Long time dynamics of modulated waves in a nonlinear discrete LC transmission line. Phys. Rev. E 68, 016605–016615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stearret, R., English, L.Q.: Experimental generation of intrinsic localized modes in a discrete electrical transmission line. J. Phys. D: Appl. Phys. 40, 5394–5398 (2007)

    Article  Google Scholar 

  18. Essimbi, B.Z., Barashenkov, I.V.: Spatially localized voltage oscillations in an electrical lattice. J. Phys. D : Appl. Phys. 35, 1438–1441 (2002)

    Article  Google Scholar 

  19. Hirota, R.: Exact solution of the Korteweg-de-Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  20. Tsigaridas, G., Fragos, A., Polyzos, I., Fakis, M., Ioannou, A., Gianneta, V., Persophonis, P.: Evolution of near-soliton initial profiles in nonlinear wave equations through their Backlund transforms. Chaos Solitons Fract. 23, 1841–1854 (2005)

    Article  MATH  Google Scholar 

  21. Suzo, A.A.: Intertwining technique for the matrix Schrödinger equation. Phys. Lett. A 335, 88–102 (2005)

    Article  MathSciNet  Google Scholar 

  22. Banerjee, R.S.: Painlevé analysis of the \(K(m, n)\) equations which yield compactons. Phys. Scr. 57, 598–600 (1998)

    Article  Google Scholar 

  23. Yan, Z.Y., Zhang, H.Q.: New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water. Phys. Lett. A 285, 355–362 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, J.H.: The variational iteration method for eighth-order initial-boundary value problems. Phys. Scr. 76, 680–682 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dai, C.Q., Yue-Yue, W.: Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the \(exp\)-function method. Phys. Scr. 78, 015013–015019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, J.: An algebraic method exactly solving two high-dimensional nonlinear evolution equations. Chaos Solitons Fract. 23, 391–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dursun, I., Idris, D.: Solitary wave solutions of the CMKDV equation by using the quintic B-spline collocation method. Phys. Scr. 77, 065001–065008 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zayed, E.M.E., Arnous, A.H.: DNA dynamics studied using the homogenous balance method. Chin. Phys. Lett. 29, 080203–080206 (2012)

    Article  Google Scholar 

  30. Kudryashov, Nikolay A., Kochonov, Mark B.: Quasi-exact solutions of nonlinear differential equations. Appl. Math. Comput. 219, 1793–1804 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kudryashov, Nikolay A., Ryabov, Pavel N., Fedyanin, Timofey E., Kutukov, Alexendr A.: Phys. Lett. A 377, 753–759 (2013)

    Article  MathSciNet  Google Scholar 

  32. Kudryashov, Nikolay A.: Quasi-exact solutions of the dissipative Kuramoto–Sivashinsky equation. Appl. Math. Comput. 219, 9245–9253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ryabov, P.N., Sinelshchikov, D.I., Kochanov, M.B.: Exact solutions of the Kudryashov–Sinelshchikov equation using the multiple \((G^{^{\prime }}/G)\)-expansion method. Appl. Math. Comput. 218, 3965–3972 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Malwe, B.H., Gambo, B., Doka, S.Y., Kofane, T.C.: Soliton wave solutions for the nonlinear transmission line using Kudryashov method and \((\mathbf{G}^{^{\prime }}/\mathbf{G})\)-expansion method. Appl. Math. Comput. 239, 299–309 (2014)

    Article  MathSciNet  Google Scholar 

  35. Wang, M., Li, X., Zhang, J.: The \((G^{^{\prime }}/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  36. Aslan, Ismail, Oziz, Turgut: Analytic study on two nonlinear evolution equations by using the \((G^{^{\prime }}/G)\)-expansion method. Appl. Math. Comput. 209, 425–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Mingliang, Zhang, Jinliang, Li, Xiangzheng: Application of the \((G^{^{\prime }}/G)\)-expansion to travelling wave solutions of the BroerKaup and the approximate long water wave equations. Appl. Math. Comput. 206, 321–326 (2008)

    Article  MathSciNet  Google Scholar 

  38. Aslan, Ismail: Exact and explicit solutions to the discrete nonlinear Schrdinger equation with a saturable nonlinearity. Phys. Lett. A 375, 4214–4217 (2011)

    Article  Google Scholar 

  39. Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equation. Chaos Solitons Fract. 24, 1217–1221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kudryashov, N.A., Dimitrova, Z.I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa–Holm equation. Appl. Math. Comput. 219, 7480–7492 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kudryashov, N.A., Dimitrova, Z.I.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model \(\text{ PDE }_{s}\) from ecology and population dynamics. Commun. Nonlinear Sci. Numer. Simul. 15, 2836–2845 (2010)

    Article  MathSciNet  Google Scholar 

  42. Taghizadeh, N., Mirzazadeh, M.: The simplest equation method to study perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 17, 1493–1499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Belic, M.: Singular solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61(19), 1550–1555 (2014). doi:10.1080/09500340.2014.944357

    Article  Google Scholar 

  44. Shun-don, Z.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fract. 37, 1335–1342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, Z., Dai, Z.: Abundant new exact solutions for the (3+1)-dimensional Jimbo–Miwa equation. J. Math. Anal. Appl. 361, 587–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tala-Tebue, E., Tsobgni-Fozap, D.C., Kenfack-Jiotsa, A., Kofane, T.C.: Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative \((G^{^{\prime }}/G)\)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus 129, 14136-9 (2014)

    Article  Google Scholar 

  47. Mostafa, S.I.: Analytical study for the ability of nonlinear transmission lines to generate solitons. Chaos Solitons Fract. 39, 2125–2132 (2009)

    Article  Google Scholar 

  48. Remoissenet, M.: Waves Called Solitons, 3rd edn. Springer-Verlag, Berlin (1999)

    Book  MATH  Google Scholar 

  49. Zheng, C.L.: Comment on the generalizing Riccati equation mapping method in nonlinear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fract. 39, 1493–1495 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boudoue Hubert Malwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malwe, B.H., Betchewe, G., Doka, S.Y. et al. Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn 84, 171–177 (2016). https://doi.org/10.1007/s11071-015-2318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2318-4

Keywords

Navigation