Skip to main content
Log in

Noether symmetries and conserved quantities for Birkhoffian systems with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Noether symmetries and conserved quantities for Birkhoffian systems with time delay are proposed and studied. First, the Pfaff–Birkhoff principle with time delay is proposed, and Birkhoff’s equations with time delay are obtained. Second, based on the invariance of the Pfaff action with time delay under a group of infinitesimal transformations, the Noether symmetric transformations and the Noether quasisymmetric transformations of the system are defined, and the criteria of the Noether symmetries are established. Finally, the relationship between the symmetries and the conserved quantities are studied, and the Noether theorems for Birkhoffian systems with time delay are established. Some examples are given to illustrate the application of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, H.Y., Wang, Z.H.: Review on nonlinear dynamic systems involving time delays. Adv. Mech. 29(4), 501–512 (1999) (in Chinese)

    Google Scholar 

  2. Xu, J., Pei, L.J.: Advances in dynamics for delayed systems. Adv. Mech. 36(1), 17–30 (2006) (in Chinese)

    Google Scholar 

  3. Wang, Z.H., Hu, H.Y.: Stability and biturcation of delayed dynamic systems: from theory to application. Adv. Mech. 43(1), 3–20 (2013) (in Chinese)

    Google Scholar 

  4. Èl’sgol’c, L. É.: Qualitative Methods in Mathematical Analysis. American Mathematical Society, Providence 12 (1964)

  5. Hughes, D.K.: Variational and optimal control problems with delayed argument. J. Optim. Theory Appl. 2(1), 1–4 (1968)

    Article  MATH  Google Scholar 

  6. Palm, W.J., Schmitendorf, W.E.: Conjugate-point conditions for variational problems with delay argument. J. Optim. Theory Appl. 14(6), 34–51 (1974)

    Article  MathSciNet  Google Scholar 

  7. Rosenblueth, J.F.: Systems with time delay in the calculus of variations: the method of steps. J. Math. Control Inform. 5(4), 285–299 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, W.L., Yung, S.P.: Sufficient conditions for variations problems with delayed argument. J. Optim. Theory Appl. 76(1), 131–144 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lee, C.H., Yung, S.P.: Sufficient conditions for optimal control problems with time delay. J. Optim. Theory Appl. 88(1), 157–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zaslavski, A.J.: Solutions of a class of optimal control problems of time delay, Part 1. J. Optim. Theory Appl. 91(1), 155–184 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frankena, J.F.: Optimal control problems with delay, the maximum principle and necessary conditions. J. Eng. Math. 9(1), 53–64 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wong, K.H.: Optimal control computation for parabolic systems with boundary conditions involving time delay. J. Optim. Theory Appl. 53(3), 475–507 (1987)

    Google Scholar 

  13. Sadek, I.S.: Optimal control of time-delay systems with distributed parameters. J. Optim. Theory Appl. 67(3), 567–585 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elsanousi, I., Oksendal, B., Sulem, A.: Some solvable stochastic control problems with delay. Stoch. Stoch. Rep. 71(1–2), 69–89 (2000)

    Article  Google Scholar 

  15. Barkin, A.I.: Stability of linear time-delay systems. Autom. Remote Control. 67(3), 345–349 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bokov, G.V.: Pontryagin’s maximum principle of optimal control problems with time-delay. J. Math. Sci. 172(5), 623–634 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Torres, D.F.M.: Carathéodory equivalence, noether theorems, and Tonelli full-regularity in the calculus of variations and optimal control. J. Math. Sci. 120(1), 1032–1050 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Noether, A.E.: Invariante variationsprobleme. Nachr. Akad. Wiss. Gott. Math. Phys. 2, 235–237 (1918)

    Google Scholar 

  19. Djukić, D.J.S., Vujanović, B.D.: Noether’s theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, D.: Noether’s theorem and its inverse of nonholonomic nonconservative dynamical systems. Sci. China Ser. A 34(4), 419–429 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Zhang, Y., Mei, F.X.: Noether’s theory of mechanical systems with unilateral constraints. Appl. Math. Mech. 21(1), 59–66 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mei, F.X.: Symmetries and Invariants of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2004). (in Chinese)

    Google Scholar 

  23. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A Math. Gen. 12(7), 973–981 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lutzky, M.: Non-invariance symmetries and constants of the motion. Phys. Lett. A 72(2), 86–88 (1979)

    Article  MathSciNet  Google Scholar 

  25. Lutzky, M.: Origin of non-Noether invariants. Phys. Lett. A 75(1–2), 8–10 (1979)

    Article  MathSciNet  Google Scholar 

  26. Mei, F.X.: Form invariance of Lagrange system. J. Beijing Inst. Technol. 9(2), 120–124 (2000)

    MATH  Google Scholar 

  27. Li, Z.J., Jiang, W., Luo, S.K.: Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems. Nonlinear Dyn. 67(1), 445–455 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jiang, W., Li, Z.J., Luo, S.K.: Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems. Nonlinear Dyn. 67(2), 1075–1081 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, P.: Peturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dyn. 68(1–2), 53–62 (2012)

    Article  MATH  Google Scholar 

  30. Jia, L.Q., Wang, X.X., Zhang, M.L.: Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 69(4), 1807–1812 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Li, Z.J., Luo, S.K.: A new Lie symmetrical method of finding conserved quantity for Birkhoffian systems. Nonlinear Dyn. 70(2), 1117–1124 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Han, Y.L., Wang, X.X., Zhang, M.L., Jia, L.Q.: Lie symmetry and approximate Hojman conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 71(3), 401–408 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Han, Y.L., Wang, X.X., Zhang, M.L., Jia, L.Q.: Special Lie symmetry and Hojman conserved quantity of Appell equations for a Chetaev nonholonomic system. Nonlinear Dyn. 73(1–2), 357–361 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Frederico, G.S.F., Torres, D.F.M.: Noether’s symmetry theorem for variational and optimal control problems with time delay. Numer. Algebra Control Optim. 2(3), 619–630-linebreak (2012)

    Google Scholar 

  35. Zhang, Y., Jin, S.X.: Noether symmetries of dynamics for non-conservative systems with time delay. Acta Phys. Sin. 62(23), 214502 (2013)

    MathSciNet  Google Scholar 

  36. Jin, S.X., Zhang, Y.: Noether symmetry and conserved quantity for Hamilton system with time delay. Chin. Phys. B. 23(5), 054501 (2014)

    Google Scholar 

  37. Birkhoff, G.D.: Dynamical Systems. AMS College Publication, Providence (1927)

    MATH  Google Scholar 

  38. Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  39. Galiullin, A.S.: Analytical Dynamics. Anuka, Moscow (1989). (in Russian)

    MATH  Google Scholar 

  40. Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. UFN, Moscow (1997). (in Russian)

    Google Scholar 

  41. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian Systems. Beijing Institute of Technology Press, Beijing (1996). (in Chinese)

    Google Scholar 

  42. Mei, F.X., Shi, R.C.: On the Pfaff-Birkhoffian principle. J. Beijing Inst. Technol. 13(2II), 265–273 (1993) (in Chinese)

    Google Scholar 

  43. Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999). (in Chinese)

    Google Scholar 

  44. Mei, F.X.: On the Birkhoffian mechanics. Int. J. Non-Linear Mech. 36(5), 817–834 (2001)

    Article  MATH  Google Scholar 

  45. Mei, F.X.: Noether theory of Birkhoffian system. Sci. China Ser. A 36(12), 1456–1467 (1993)

    MATH  MathSciNet  Google Scholar 

  46. Zhang, Y., Mei, F.X.: Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system. Acta Phys. Sin. 53(8), 2419–2423 (2004). (in Chinese)

    MATH  MathSciNet  Google Scholar 

  47. Wang, C.D., Liu, S.X., Mei, F.X.: Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta. Phys. Sin. 59(12), 8322–8325 (2010)

    Google Scholar 

  48. Zhang, Y., Zhou, Y.: Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dyn. 73(1–2), 783–793 (2013)

    Article  MATH  Google Scholar 

  49. Zheng, G.H., Chen, X.W., Mei, F.X.: First integrals and reduction of the Birkhoffian system. J. Beijing Int. Technol. 10(1), 17–22 (2001)

    MATH  MathSciNet  Google Scholar 

  50. Zhang, Y.: Poisson theory and integration method of Birkhoffian systems in the event space. Chin. Phys. B 19(8), 080301 (2010)

    Article  Google Scholar 

  51. Wu, H.B., Mei, F.X.: Type of integral and reduction for a generalized Birkhoffian system. Chin. Phys. B 20(10), 104501 (2011)

    Article  Google Scholar 

  52. Mei, F.X.: Stability of motion for a constrained Birkhoff’s system in terms of independent variables. Appl. Math. Mech. (Engl Edn.) 18(1), 55–60 (1997)

    Article  MATH  Google Scholar 

  53. Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47(3), 313–322 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. Liu, S.X., Liu, C., Guo, Y.X.: Geometric formulations and variational integrators of discrete autonomous Birkhoff systems. Chin. Phys. B 20(3), 034501 (2011)

    Article  Google Scholar 

  55. El-Nabulsi, A.R.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A 14(4), 289–298 (2005)

    Google Scholar 

  56. El-Nabulsi, A.R.: A fractional action-like variational approach of some classical, quantum and geometrical dynamics. Int. J. Appl. Math. 17(3), 299–317 (2005)

    Google Scholar 

  57. El-Nabulsi, A.R., Torres, D.F.M.: Fractional action-like variational problems. J. Math. Phys. 49, 053521 (2008)

    Article  MathSciNet  Google Scholar 

  58. El-Nabulsi, A.R.: Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems. Chaos, Solitons Fractals 42, 52–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant Nos.10972151 and 11272227), the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province (No. CXZZ13_0853), and the Innovation Program for Postgraduate of Suzhou University of Science and Technology (No. SKCX13S_051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, XH., Zhang, Y. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dyn 77, 73–86 (2014). https://doi.org/10.1007/s11071-014-1274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1274-8

Keywords

Navigation