Skip to main content
Log in

Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we research Noether’s theorems of fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. First, the generalized Pfaff–Birkhoff principle and Birkhoff’s equations with classical and combined Caputo derivatives are given. Then, in the case of without and with transforming time, respectively, we obtain two kinds of Noether symmetry and their conserved quantities by the method of time re-parameterization. Finally, by taking case of generalized Birkhoffian systems, we study the relationship between Noether symmetry and Mei symmetry. It is concluded that the generalized Birkhoff equations, Noether identity and Noether conserved quantity obtained by using the generalized Pfaff–Birkhoff principle based on the action functional with dynamical functions after infinitesimal transformation are completely consistent with the criterion equation, structural equation and Mei conserved quantity of the fractional generalized Birkhoffian system, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Applications. Wiley, New York (1993)

    Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  4. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B V, Amsterdam (2006)

    MATH  Google Scholar 

  6. Chen, L.C., Zhu, W.Q.: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56, 231–241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. El-Nabulsi, R.A.: Modifications at large distances from fractional and fractal arguments. Fractals 18(2), 185–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yildirim, A.: Determination of periodic solutions for nonlinear oscillators with fractional powers by He’s modified Lindstedt–Poincaré method. Meccanica 45, 1–6 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sarkar, N., Lahiri, A.: The effect of fractional parameter on a perfect conducting elastic half-space in generalized magneto-thermo elasticity. Meccanica 48, 231–245 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Merdan, M., Gökdoǧan, A., Yildirim, A.: On numerical solution to fractional non-linear oscillatory equations. Meccanica 48, 1201–1213 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luo, S.K., Li, L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Nabulsi, R.A.: Fractional functional with two occurrences of integrals and asymptotic optimal change of drift in the Black–Scholes model. Acta Math. Viet. 40, 689–703 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  14. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  15. Klimek, M.: Fractional sequential mechanics-models with symmetric fractional derivative. Czech. J. Phys. 51(12), 1348–1354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52(11), 1247–1253 (2002)

    Article  MATH  Google Scholar 

  17. Klimek, M.: Lagrangian fractional mechanics—a non-commutative approach. Czech. J. Phys. 55, 1447–1454 (2005)

    Article  Google Scholar 

  18. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Agrawal, O.P., Muslih, S.I., Baleanu, D.: Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simulat. 16(12), 4756–4767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Atanacković, T.M.: Variational problems with fractional derivatives: Euler–Lagrange equations. J. Phys. A Math. Theor. 41, 095201 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Atanacković, T.M., Pilipović, S.: Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 14(1), 94–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jumarie, G.: Fractional Hamilton–Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost functions. J. Appl. Math. Comput. 23(1–2), 215–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119(1), 73–79 (2003)

    Google Scholar 

  24. Baleanu, D., Muslih, S.I., Rabei, E.M., Golmankhaneh, A.K., Golmankhaneh, A.K.: On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives. Rom. Rep. Phys. 63(1), 3–8 (2011)

    Google Scholar 

  25. Baleanu, D., Trujillo, J.I.: A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 15, 1111–1115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75, 1507–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  28. Almeida, R., Pooseh, S., Torres, D.F.M.: Fractional Calculus of Variations. Imperial College Press, London (2015)

    Book  MATH  Google Scholar 

  29. El-Nabulsi, R.A., Torres, D.F.M.: Fractional action-like variational problems. J. Math. Phys. 49, 053521 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. El-Nabulsi, R.A.: Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems. Chaos Soliton. Fract. 42, 52–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. El-Nabulsi, R.A.: Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comput. 217, 9492–9496 (2011)

    MathSciNet  MATH  Google Scholar 

  32. El-Nabulsi, R.A.: Universal fractional Euler–Lagrange equation from a generalized fractional derivate operator. Cent. Eur. J. Phys. 9(1), 250–256 (2011)

    Google Scholar 

  33. El-Nabulsi, R.A.: Fractional variational approach for dissipative mechanical systems. Anal. Theory Appl. 30(3), 1–10 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. El-Nabulsi, R.A.: Fractional variational approach with non-Standard power-law degenerate Lagrangians and a generalized derivative operator. Tbilisi J. Math. 9(1), 279–294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cresson, J.: Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 48, 033504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tarasov, V.E.: Fractional Dynamics. Higher Education Press, Beijing (2010)

    Book  MATH  Google Scholar 

  38. Li, L., Luo, S.K.: Fractional generalized Hamiltonian mechanics. Acta Mech. 224, 1757–1771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Y.: Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives. Chin. Phys. B 21(8), 084502 (2012)

    Article  Google Scholar 

  40. Zhou, Y., Zhang, Y.: Fractional Pfaff-Birkhoff principle and Birkhoff’s equations in terms of Riesz fractional derivatives. Trans. Nanjing Univ. Aero. Astro. 31(1), 63–69 (2014)

    Google Scholar 

  41. Noether, A.E.: Invariante variationsprobleme. Nachr. Akad. Wiss. Gott. Math. Phys. 2, 235–237 (1918)

    MATH  Google Scholar 

  42. Djukić, DjS, Vujanović, B.: Noether’s theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dyn. 84(4), 1867–1876 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Y.: Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. Int. J. Non-Linear Mech. 101, 36–43 (2018)

    Article  Google Scholar 

  45. Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999)

    Google Scholar 

  46. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A Math. Gen. 12, 973–981 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mei, F.X.: Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mech. 141, 135–148 (2000)

    Article  MATH  Google Scholar 

  48. Zhang, Y., Mei, F.X.: Lie symmetries of mechanical systems with unilateral holonomic constraints. Chin. Sci. Bull. 45, 1354–1358 (2000)

    Article  MathSciNet  Google Scholar 

  49. Tchier, F., Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Time fractional third-order variant Boussinesq system: symmetry analysis, explicit solutions, conservation laws and numerical approximations. Eur. Phys. J. Plus 133(6), 240 (2018)

    Article  Google Scholar 

  50. Inc, M., Yusuf, A., Aliyu, A.I., Baleanu, D.: Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations. Phys. A 496, 371–383 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mei, F.X.: Form invariance of Lagrange system. J. Beijing Inst. Technol. 9(2), 120–124 (2000)

    MathSciNet  MATH  Google Scholar 

  52. Mei, F.X.: Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2004)

    Google Scholar 

  53. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Frederico, G.S.F., Torres, D.F.M.: Fractional isoperimetric Noether’s theorem in the Riemann–Liouville sense. Rep. Math. Phys. 71(3), 291–304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Frederico, G.S.F., Torres, D.F.M.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum 3(10), 479–493 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Frederico, G.S.F., Torres, D.F.M.: Fractional Noether’s theorem in the Riesz–Caputo sense. Appl. Math. Comput. 217(3), 1023–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Frederico, G.S.F., Lazo, M.J.: Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems. Nonlinear Dyn. 85, 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lazo, M.J., Krumreich, C.E.: The action principle for dissipative systems. J. Math. Phys. 55, 122902 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Santilli, R.M.: Foundations of Theoretical Mechanics. Springer, New York (1983)

    Book  MATH  Google Scholar 

  60. Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz. Birkhoff and Nambu Systems, UFN, Moscow (1997). (in Russian)

    Google Scholar 

  61. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoffian Systems. Beijing Institute of Technology Press, Beijing (1996). (in Chinese)

    Google Scholar 

  62. Mei, F.X., Wu, H.B., Li, Y.M., Chen, X.W.: Advances in research on Birkhoffian mechanics. Chin. J. Theor. Appl. Mech. 48(2), 263–268 (2016). (in Chinese)

    Google Scholar 

  63. Mei, F.X.: Noether theory of Birkhoffian system. Sci. China (Ser. A) 36(12), 1456–1467 (1993)

    MathSciNet  MATH  Google Scholar 

  64. Mei, F.X.: Dynamics of Generalized Birkhoffian System. Science Press, Beijing (2013). (in Chinese)

    Google Scholar 

  65. Zhou, Y., Zhang, Y.: Fractional Pfaff–Birkhoff principle and fractional Birkhoff’s equations within Caputo fractional derivatives. Bullet. Sci. Technol. 29(3), 4–10 (2013). (in Chinese)

    Google Scholar 

  66. Zhang, Y., Zhou, Y.: Symmetries and conserved quantities for fractional action-like Pfaffian variational problems. Nonlinear Dyn. 73(1–2), 783–793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhou, Y., Zhang, Y.: Noether’s theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives. Chin. Phys. B 23(12), 124502 (2014)

    Article  Google Scholar 

  68. Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81(1–2), 469–480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Bourdin, L., Cresson, J., Greff, I.: A continuous/discrete fractional Noether’s theorem. Commun. Nonlinear Sci. Numer. Simul. 18, 878–887 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.11972241, 11572212, 11272227), the Natural Science Foundation of Jiangsu Province (No. BK20191454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, Y. Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives. Acta Mech 231, 3017–3029 (2020). https://doi.org/10.1007/s00707-020-02690-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02690-y

Navigation