Skip to main content
Log in

A new Lie symmetrical method of finding conserved quantity for Birkhoffian systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For a Birkhoffian system, a new Lie symmetrical method to find a conserved quantity is given. Based on the invariance of the equations of motion for the system under a general infinitesimal transformation of Lie groups, the Lie symmetrical determining equations are obtained. Then, several important relationships which reveal the interior properties of the Birkhoffian system are given. By using these relationships, a new Lie symmetrical conservation law for the Birkhoffian system is presented. The new conserved quantity is constructed in terms of infinitesimal generators of the Lie symmetry and the system itself without solving the structural equation which may be very difficult to solve. Furthermore, several deductions are given in the special infinitesimal transformations and the results are reduced to a Hamiltonian system. Finally, one example is given to illustrate the method and results of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G.D.: Dynamical Systems. AMSCollege Publisher, Providence (1927)

    MATH  Google Scholar 

  2. Santilli, R.M.: Foundations of Theoretical Mechanics I. Springer, New York (1978)

    Book  MATH  Google Scholar 

  3. Santilli, R.M.: Foundations of Theoretical Mechanics II. Springer, New York (1983)

    Book  MATH  Google Scholar 

  4. Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B.: Dynamics of Birkhoff Systems. Beijing Institute of Technology, Beijing (1996)

    Google Scholar 

  5. Chen, X.W.: Closed orbits and limit cycles of second-order autonomous Birkhoff systems. Chin. Phys. 12, 586–589 (2003)

    Article  Google Scholar 

  6. Luo, S.K.: First integrals and integral invariants of relativistic Birkhoffian systems. Commun. Theor. Phys. 40, 133–136 (2003)

    MATH  Google Scholar 

  7. Luo, S.K.: Form invariance and Noether symmetries of rotational relativistic Birkhoff system. Commun. Theor. Phys. 38, 257–260 (2002)

    Google Scholar 

  8. Zhang, Y.: A geometrical approach to Hojman theorem of a rotational relativistic Birkhoffian system. Commun. Theor. Phys. 42, 669–671 (2004)

    MATH  Google Scholar 

  9. Su, H.L.: Birkhoffian symplectic scheme for a quantum system. Commun. Theor. Phys. 53, 476–480 (2010)

    Article  MATH  Google Scholar 

  10. Li, Y.M., Mei, F.X.: Stability for manifolds of equilibrium states of generalized Birkhoff system. Chin. Phys. B 19, 080302 (2010)

    Article  Google Scholar 

  11. Zhang, Y.: Stability of motion for generalized Birkhoffian systems. J. Chin. Ordnance 6, 161–165 (2010)

    Google Scholar 

  12. Jiang, W.A., Li, L., Li, Z.J., Luo, S.K.: Lie symmetrical perturbation and adiabatic invariants of non-Noether type for generalized Birkhoffian systems. Nonlinear Dyn. 67, 1075–1081 (2012)

    Article  MATH  Google Scholar 

  13. Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X.: Birkhoffian formulations of nonholonomic constrained systems. Rep. Math. Phys. 47, 313–322 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, H.B., Chen, L.Q., Gu, S.L., Liu, C.Z.: The discrete variational principle and the first integrals of Birkhoff systems. Chin. Phys. 16, 582–587 (2007)

    Article  Google Scholar 

  15. Mei, F.X., Cai, J.L.: Integral invariant or a generalized Birkhoff system. Acta Phys. Sin. 57, 4657–4659 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Noether, A.E.: Invariant variations problem. Nachr. Akad. Wiss. Gott., Math. Phys. 2, 235–237 (1918)

    Google Scholar 

  17. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A, Math. Gen. 12, 973–981 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lutzky, M.: Non-invariance symmetries and constants of the motion. Phys. Lett. A 72, 86–88 (1979)

    Article  MathSciNet  Google Scholar 

  19. Lutzky, M.: Origin of non-Noether invariants. Phys. Lett. A 75, 8–10 (1979)

    Article  MathSciNet  Google Scholar 

  20. Hojman, S.A.: A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A, Math. Gen. 25, 291–295 (1992)

    Article  MathSciNet  Google Scholar 

  21. Lutzky, M.: Conserved quantities from non-Noether symmetries without alternative Lagrangians. Int. J. Non-Linear Mech. 34, 387–390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science, Beijing (1999)

    Google Scholar 

  23. Luo, S.K.: Form invariance and Lie symmetries of rotational relativistic Birkhoff system. Chin. Phys. Lett. 19, 449–451 (2002)

    Article  Google Scholar 

  24. Fang, J.H., Zhao, S.Q., Jiao, Z.Y.: The Lie symmetries and conserved quantities of variable-mass nonholonomic system of non-Chetave’s type in phase space. Appl. Math. Mech. 23, 1215–1220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, H.B., Chen, L.Q.: The united form of Hojman’s conservation law and Lutzky’s conservation law. J. Phys. Soc. Jpn. 74, 905–909 (2005)

    Article  MATH  Google Scholar 

  26. Luo, S.K.: A new type of non-Noether adiabatic invariants for disturbed Lagrangian systems: adiabatic invariants of generalized Lutzky type. Chin. Phys. Lett. 24, 2463–2466 (2007)

    Article  Google Scholar 

  27. Cai, J.L.: Conformal invariance and conserved quantities of general holonomic systems. Chin. Phys. Lett. 25, 1523–1526 (2008)

    Article  Google Scholar 

  28. Cai, J.L., Mei, F.X.: Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Phys. Sin. 57, 5369–5373 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Cai, J.L., Luo, S.K., Mei, F.X.: Conformal invariance and conserved quantity of Hamilton systems. Chin. Phys. B 17, 3170–3174 (2008)

    Article  Google Scholar 

  30. Zheng, S.W., Xie, J.F., Jia, L.Q.: Symmetry and Hojman conserved quantity of Tzénoff equations for unilateral holonomic system. Commun. Theor. Phys. 48, 43–47 (2007)

    Article  MathSciNet  Google Scholar 

  31. Xie, Y.L., Jia, L.Q.: Special Lie–Mei symmetry and conserved quantities of Appell equations expressed by Appell fun. Chin. Phys. Lett. 27, 120201 (2010)

    Article  Google Scholar 

  32. Li, Z.J., Jiang, W.A., Luo, S.K.: Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems. Nonlinear Dyn. 67, 445–455 (2012)

    Article  MATH  Google Scholar 

  33. Jiang, W.A., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is partly supported by National Natural Science Foundation of China (grant Nos. 10972127 and 10372053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaokai Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Luo, S. A new Lie symmetrical method of finding conserved quantity for Birkhoffian systems. Nonlinear Dyn 70, 1117–1124 (2012). https://doi.org/10.1007/s11071-012-0517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0517-9

Keywords

Navigation