Skip to main content

Advertisement

Log in

Astrocyte Cultures Mimicking Brain Astrocytes in Gene Expression, Signaling, Metabolism and K+ Uptake and Showing Astrocytic Gene Expression Overlooked by Immunohistochemistry and In Situ Hybridization

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Based on differences in gene expression between cultured astrocytes and freshly isolated brain astrocytes it has been claimed that cultured astrocytes poorly reflect the characteristics of their in vivo counterparts. This paper shows that this is not the case with the cultures of mouse astrocytes we have used since 1978. The culture is prepared following guidelines provided by Drs. Monique Sensenbrenner and John Booher, with the difference that dibutyryl cyclic AMP is added to the culture medium from the beginning of the third week. This addition has only minor effects on glucose and glutamate metabolism, but it is crucial for effects by elevated K+ concentrations and for Ca2+ homeostasis, important aspects of astrocyte function. Work by Liang Peng and her colleagues has shown identity between not only gene expression but also drug-induced gene upregulations and editings in astrocytes cultured by this method and astrocytes freshly isolated from brains of drug-treated animals. Dr. Norenberg’s laboratory has demonstrated identical upregulation of the cotransporter NKCC1 in ammonia-exposed astrocytes and rats with liver failure. Similarity between cultured and freshly isolated astrocytes has also been shown in metabolism, K+ uptake and several aspects of signaling. However, others have shown that the gene for the glutamate transporter GLT1 is not expressed, and rat cultures show some abnormalities in K+ effects. Nevertheless, the overall reliability of the cultured cells is important because immunohistochemistry and in situ hybridization poorly demonstrate many astrocytic genes, e.g., those of nucleoside transporters, and even microarray analysis of isolated cells can be misleading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59:932–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106

    Article  CAS  PubMed  Google Scholar 

  3. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  Google Scholar 

  4. Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung WS, Zhou L, Cahoy JD, Daneman R, Zong H, Ellisman MH, Barres BA (2011) Development of a method for the purification and culture of rodent astrocytes. Neuron 71:799–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stieg PE, Kimelberg HK, Mazurkiewicz JE, Banker GA (1980) Distribution of glial fibrillary acidic protein and fibronectin in primary astroglial cultures from rat brain. Brain Res 199:493–500

    Article  CAS  PubMed  Google Scholar 

  7. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  CAS  PubMed  Google Scholar 

  8. Dittmann L, Sensenbrenner M, Hertz L, Mandel P (1973) Respiration by cultivated astrocytes and neurons from the cerebral hemispheres. J Neurochem 21:191–198

    Article  CAS  PubMed  Google Scholar 

  9. Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105

    CAS  PubMed  Google Scholar 

  10. Hertz L, Schousboe A, Boechler N, Mukerji S, Fedoroff S (1978) Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem Res 3:1–14

    Article  CAS  PubMed  Google Scholar 

  11. Bekar LK, He W, Nedergaard M (2008) Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex 18:2789–2795

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wandosell F, Bovolenta P, Nieto-Sampedro M (1993) Differences between reactive astrocytes and cultured astrocytes treated with di-butyryl-cyclic AMP. J Neuropathol Exp Neurol 52:205–215

    Article  CAS  PubMed  Google Scholar 

  13. Juurlink BHJ, Hertz L (1992) Astrocytes. In: Boulton AA, Baker GB, Walz W (eds) Neuromethods in cell cultures. Humana Clifton, New York, pp 269–321

    Google Scholar 

  14. Hertz L (1982) Astrocytes. In: Lajtha A (ed) Hand-book of neurochemistry, vol 1. Plenum Press, New York, pp 319–355

    Google Scholar 

  15. Hertz L (1981) Functional interactions between astrocytes and neurons. In: Fedoroff S (ed) Eleventh international congress of anatomy: glial and neuronal cell biology. Alan R Liss, New York, pp 45–58

    Google Scholar 

  16. Hertz L (1990) Dibutyryl cyclic AMP treatment of astrocytes in primary cultures as a substitute for normal morphogenic and ‘functiogenic’ transmitter signals. In: Lauder JM, Privat A, Giacobini E, Timiras PS, Vernadakis A (eds) Molecular aspects of development and aging of the nervous system. Plenum Press, New York, pp 227–243

    Chapter  Google Scholar 

  17. Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19:1–15

    Article  CAS  Google Scholar 

  18. Ferroni S, Marchini C, Schubert P, Rapisarda C (1995) Two distinct inwardly rectifying conductances are expressed in long term dibutyryl-cyclic-AMP treated rat cultured cortical astrocytes. FEBS Lett 367:319–325

    Article  CAS  PubMed  Google Scholar 

  19. Moonen G, Sensenbrenner M (1976) Effects of dibutyryl cyclic AMP on cultured brain cells from chick embryos of different ages. Experientia 32:40–42

    Article  CAS  PubMed  Google Scholar 

  20. Lodin Z, Faltin J, Korínková P (1979) The effect of dibutyryl cyclic AMP on cultivated glial cells from corpus callosum of 30-day-old rats. Physiol Bohemoslov 28:105–111

    CAS  PubMed  Google Scholar 

  21. Schousboe A, Nissen C, Bock E, Sapirstein VS, Juurlink BHJ, Hertz L (1980) Biochemical development of rodent astrocytes in primary cultures. In: Giacobini E, Vernadakis A, Shahar A (eds) Tissue culture in neurobiology. Raven, New York, pp 397–409

    Google Scholar 

  22. Hertz L, Bock E, Schousboe A (1978) GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev Neurosci 1:226–238

    Article  CAS  Google Scholar 

  23. Potter RL, Yu AC, Schousboe A, Hertz L (1982) Metabolic fate of [U-14C]-labeled glutamate in primary cultures of mouse astrocytes as a function of development. Dev Neurosci 5:278–284

    Article  CAS  PubMed  Google Scholar 

  24. White FP, Hertz L (1981) Protein synthesis by astrocytes in primary cultures. Neurochem Res 6:353–364

    Article  CAS  PubMed  Google Scholar 

  25. Bridoux AM, Fages C, Couchie D, Nunez J, Tardy M (1986) Protein synthesis in astrocytes: ‘spontaneous’ and cyclic AMP-induced differentiation. Dev Neurosci 8:31–43

    Article  CAS  PubMed  Google Scholar 

  26. Neary JT, del Pilar Gutierrez M, Norenberg LO, Norenberg MD (1987) Protein phosphorylation in primary astrocyte cultures treated with and without dibutyryl cyclic AMP. Brain Res 410:164–168

    Article  CAS  PubMed  Google Scholar 

  27. Neary JT, Norenberg LO, Norenberg MD (1988) Protein kinase C in primary astrocyte cultures: cytoplasmic localization and translocation by a phorbol ester. J Neurochem 50:1179–1184

    Article  CAS  PubMed  Google Scholar 

  28. McCarthy KD, Prime J, Harmon T, Pollenz R (1985) Receptor-mediated phosphorylation of astroglial intermediate filament proteins in cultured astroglia. J Neurochem 44:723–730

    Article  CAS  PubMed  Google Scholar 

  29. Browning ET (1988) Hormone and second messenger regulated protein phosphorylation by cultured rat astrocytes: cytoskeletal IF phosphorylation. In: Kimelberg OK (ed) Glial cell receptors. Raven Press, New York, pp 23–34

    Google Scholar 

  30. Hertz E, Hertz L (1979) Polarographic measurement of oxygen uptake by astrocytes in primary cultures using the tissue-culture flask as the respirometer chamber. In Vitro 15:429–436

    Article  CAS  PubMed  Google Scholar 

  31. McKenna MC (2012) Substrate competition studies demonstrate oxidative metabolism of glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate in cortical astrocytes from rat brain. Neurochem Res 37:2613–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nissen C, Schousboe A (1979) Activity and isoenzyme pattern of lactate dehydrogenase in astroblasts cultured from brains of newborn mice. J Neurochem 32:1787–1792

    Article  CAS  PubMed  Google Scholar 

  33. Schousboe A, Fosmark H, Hertz L (1975) High content of glutamate and of ATP in astrocytes cultured from rat brain hemispheres: effect of serum withdrawal and of cyclic AMP. J Neurochem 25:909–911

    Article  CAS  PubMed  Google Scholar 

  34. Moonen G, Franck G (1977) Potassium effect on Na+-K+ ATPase activity of cultured newborn rat astroblasts during differentiation. Neurosci Lett 4:263–267

    Article  CAS  PubMed  Google Scholar 

  35. Kimelberg HK, Narumi S, Bourke RS (1978) Enzymatic and morphological properties of primary rat brain astrocyte cultures, and enzyme development in vivo. Brain Res 153:55–77

    Article  CAS  PubMed  Google Scholar 

  36. Sullivan SM, Lee A, Björkman ST, Miller SM, Sullivan RK, Poronnik P, Colditz PB, Pow DV (2007) Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP. J Biol Chem 282:29414–29423

    Article  CAS  PubMed  Google Scholar 

  37. Derouiche A, Frotscher M (2001) Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 36:330–341

    Article  CAS  PubMed  Google Scholar 

  38. Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A (2000) The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signaling mechanisms. Neurochem Int 37:163–170

    Article  CAS  PubMed  Google Scholar 

  39. Larsson OM, Hertz L, Schousboe A (1986) Uptake of GABA and nipecotic acid in astrocytes and neurons in primary cultures: changes in the sodium coupling ratio during differentiation. J Neurosci Res 16:699–708

    Article  CAS  PubMed  Google Scholar 

  40. Chen Y, Peng L, Zhang X, Stolzenburg JU, Hertz L (1995) Further evidence that fluoxetine interacts with a 5-HT2C receptor in glial cells. Brain Res Bull 38:153–159

    Article  CAS  PubMed  Google Scholar 

  41. Kong EK, Peng L, Chen Y, Yu AC, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 27:113–120

    Article  CAS  PubMed  Google Scholar 

  42. MacVicar BA, Hochman D, Delay MJ, Weiss S (1991) Modulation of intracellular Ca2+ in cultured astrocytes by influx through voltage-activated Ca2+ channels. Glia 4:448–455

    Article  CAS  PubMed  Google Scholar 

  43. Hertz L, Bender AS, Woodbury DM, White HS (1989) Potassium-stimulated calcium uptake in astrocytes and its potent inhibition by nimodipine. J Neurosci Res 22:209–215

    Article  CAS  PubMed  Google Scholar 

  44. Hertz L, Code WE (1993) Calcium channel signalling in astrocytes. In: Paoletti R, Godfraind T, Vankoullen PM (eds) Calcium antagonists: pharmacology and clinical research. Kluwer, Boston, pp 205–213

    Chapter  Google Scholar 

  45. Xu J, Song D, Bai Q, Cai L, Hertz L, Peng L (2014) Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA. Neurochem Res 39:661–667

    Article  CAS  PubMed  Google Scholar 

  46. Hertz L, Xu J, Song D, Du T, Li B, Yan E, Peng L (2015) Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis 30:317–333

    Article  CAS  PubMed  Google Scholar 

  47. Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8:1922–1928

    CAS  PubMed  Google Scholar 

  48. Ibrahim MZ (1975) Glycogen and its related enzymes of metabolism in the central nervous system. Adv Anat Embryol Cell Biol 52:3–89

    CAS  PubMed  Google Scholar 

  49. Pfeiffer-Guglielmi B, Fleckenstein B, Jung G, Hamprecht B (2003) Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem 85:73–81

    Article  CAS  PubMed  Google Scholar 

  50. Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70(Suppl):S138–S144

    Article  CAS  PubMed  Google Scholar 

  51. O’Dowd BS, Gibbs ME, Ng KT, Hertz E, Hertz L (1994) Astrocytic glycogenolysis energizes memory processes in neonate chicks. Brain Res Dev Brain Res 78:137–141

    Article  PubMed  Google Scholar 

  52. Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222

    Article  PubMed  Google Scholar 

  53. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 6:e28427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na+, K+-ATPase and Marie E. Gibbs’ pioneering learning studies. Front Integr Neurosci 7:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-García JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33:550–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333

    Article  CAS  PubMed  Google Scholar 

  58. Hertz L, Gibbs ME, Dienel GA (2014) Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Front Neurosci 8:261

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342

    Article  CAS  PubMed  Google Scholar 

  60. Hertz L, Gerkau NJ, Xu J, Durry S, Song D, Rose CR, Peng L (2015) Roles of astrocytic Na+, K+-ATPase and glycogenolysis for K + homeostasis in mammalian brain. J Neurosci Res 93:1019–1030

    Article  CAS  PubMed  Google Scholar 

  61. Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M (2012) Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci Signal 5:ra26

    PubMed  PubMed Central  Google Scholar 

  62. Müller MS, Fox R, Schousboe A, Waagepetersen HS, Bak LK (2014) Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia 62:526–534

    Article  PubMed  Google Scholar 

  63. Xu J, Song D, Bai Q, Zhou L, Cai L, Hertz L, Peng L (2014) Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations. ASN Neuro 6:e00132

    PubMed  PubMed Central  Google Scholar 

  64. Hertz L, Xu J, Peng L (2014) Glycogenolysis and purinergic signaling. Adv Neurobiol 11:31–54

    Article  PubMed  Google Scholar 

  65. Dienel GA, Cruz NF (2015) Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 30:281–298

    Article  CAS  PubMed  Google Scholar 

  66. DiNuzzo M, Giove F, Maraviglia B, Mangia S (2015) Monoaminergic control of cellular glucose utilization by glycogenolysis in neocortex and hippocampus. Neurochem Res 40:2493–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  CAS  PubMed  Google Scholar 

  68. Fu H, Li B, Hertz L, Peng L (2012) Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int 61:187–194

    Article  CAS  PubMed  Google Scholar 

  69. Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. Neurochem Int 57:411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng L, Guo C, Wang T, Li B, Gu L, Wang Z (2013) Methodological limitations in determining astrocytic gene expression. Front Endocrinol 4:176

    Article  Google Scholar 

  71. Li B, Du T, Li H, Gu L, Zhang H, Huang J, Hertz L, Peng L (2008) Signalling pathways for transactivation by dexmedetomidine of epidermal growth factor receptors in astrocytes and its paracrine effect on neurons. Br J Pharmacol 154:191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li B, Hertz L, Peng L (2012) Aralar mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int 61:1325–1332

    Article  CAS  PubMed  Google Scholar 

  73. Ramos M, del Arco A, Pardo B, Martínez-Serrano A, Martínez-Morales JR, Kobayashi K, Yasuda T, Bogónez E, Bovolenta P, Saheki T, Satrústegui J (2003) Developmental changes in the Ca2+-regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in the spinal cord. Brain Res Dev Brain Res 143:33–46

    Article  CAS  PubMed  Google Scholar 

  74. Berkich DA, Ola MS, Cole J, Sweatt AJ, Hutson SM, LaNoue KF (2007) Mitochondrial transport proteins of the brain. J Neurosci Res 85:3367–3377

    Article  CAS  PubMed  Google Scholar 

  75. Pardo B, Rodrigues TB, Contreras L, Garzón M, Llorente-Folch I, Kobayashi K, Saheki T, Cerdan S, Satrústegui J (2011) Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. J Cereb Blood Flow Metab 31:90–101

    Article  CAS  PubMed  Google Scholar 

  76. Parkinson FE, Damaraju VL, Graham K, Yao SY, Baldwin SA, Cass CE, Young JD (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972

    Article  CAS  PubMed  Google Scholar 

  77. Song D, Xu J, Bai Q, Cai L, Hertz L, Peng L (2014) Role of the intracellular nucleoside transporter ENT3 in transmitter and high K+ stimulation of astrocytic ATP release investigated using siRNA against ENT3. ASN Neuro 6:1759091414543439

    Article  PubMed  PubMed Central  Google Scholar 

  78. Peng L, Huang R, Yu AC, Fung KY, Rathbone MP, Hertz L (2005) Nucleoside transporter expression and function in cultured mouse astrocytes. Glia 52:25–35

    Article  PubMed  Google Scholar 

  79. Li B, Gu L, Hertz L, Peng L (2013) Expression of nucleoside transporter in freshly isolated neurons and astrocytes from mouse brain. Neurochem Res 38:2351–2358

    Article  CAS  PubMed  Google Scholar 

  80. Nagai K, Nagasawa K, Fujimoto S (2005) Transport mechanisms for adenosine and uridine in primary-cultured rat cortical neurons and astrocytes. Biochem Biophys Res Commun 334:1343–1350

    Article  CAS  PubMed  Google Scholar 

  81. Parkinson FE, Ferguson J, Zamzow CR, Xiong W (2006) Gene expression for enzymes and transporters involved in regulating adenosine and inosine levels in rat forebrain neurons, astrocytes and C6 glioma cells. J Neurosci Res 84:801–808

    Article  CAS  PubMed  Google Scholar 

  82. Redzic ZB, Malatiali SA, Al-Bader M, Al-Sarraf H (2010) Effects of hypoxia, glucose deprivation and recovery on the expression of nucleoside transporters and adenosine uptake in primary culture of rat cortical astrocytes. Neurochem Res 35:1434–1444

    Article  CAS  PubMed  Google Scholar 

  83. Nagai K, Konishi H (2014) Effect of fluoxetine and pergolide on expression of nucleoside transporters and nucleic-related enzymes in mouse brain. Fundam Clin Pharmacol 28:217–220

    Article  CAS  PubMed  Google Scholar 

  84. Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  CAS  PubMed  Google Scholar 

  85. Li B, Dong L, Wang B, Cai L, Jiang N, Peng L (2012) Cell type-specific gene expression and editing responses to chronic fluoxetine treatment in the in vivo mouse brain and their relevance for stress-induced anhedonia. Neurochem Res 37:2480–2495

    Article  CAS  PubMed  Google Scholar 

  86. Hertz L, Song D, Li B, Du T, Xu J, Gu L, Chen Y, Peng L (2014) Signal transduction in astrocytes during chronic or acute treatment with drugs (SSRIs, antibipolar drugs, GABA-ergic drugs, and benzodiazepines) ameliorating mood disorders. J Signal Transduct 2014:593934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hertz L, Rothman DL, Li B, Peng L (2015) Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 9:25

    PubMed  PubMed Central  Google Scholar 

  88. Song D, Man Y, Li B, Xu J, Hertz L, Peng L (2013) Comparison between drug-induced and K+-induced changes in molar acid extrusion fluxes (JH+) and in energy consumption rates in astrocytes. Neurochem Res 38:2364–2374

    Article  CAS  PubMed  Google Scholar 

  89. Song D, Li B, Yan E, Man Y, Wolfson M, Chen Y, Peng L (2012) Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions. Neurochem Res 37:2524–2540

    Article  CAS  PubMed  Google Scholar 

  90. Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B 3rd, Reddy PV, Norenberg MD (2008) Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 283:33874–33882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Epstein FH, Silva P (1985) Na-K-Cl cotransport in chloride transporting epithelia. Ann N Y Acad Sci 456:187–197

    Article  CAS  PubMed  Google Scholar 

  92. Dawson DC (1987) Cellular mechanisms for K transport across epithelial cell layers. Semin Nephrol 7:185–192

    CAS  PubMed  Google Scholar 

  93. Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ (2010) Cotransport of water by the Na+-K+-2Cl cotransporter NKCC1 in mammalian epithelial cells. J Physiol 588:4089–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jayakumar AR, Valdes V, Norenberg MD (2011) The Na-K-Cl cotransporter in the brain edema of acute liver failure. J Hepatol 54:272–278

    Article  CAS  PubMed  Google Scholar 

  95. Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD (2011) Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem 117:437–448

    Article  CAS  PubMed  Google Scholar 

  96. Jayakumar AR, Tong XY, Ruiz-Cordero R, Bregy A, Bethea JR, Bramlett HM, Norenberg MD (2014) Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J Neurotrauma 31:1249–1257

    Article  PubMed  PubMed Central  Google Scholar 

  97. Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    Article  CAS  PubMed  Google Scholar 

  98. Walz W, Hertz L (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metab 4:301–304

    Article  CAS  PubMed  Google Scholar 

  99. Cai L, Du T, Song D, Li B, Hertz L, Peng L (2011) Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypotonicity-induced swelling. Neuropathology 31:250–264

    Article  PubMed  Google Scholar 

  100. Tas PW, Massa PT, Kress HG, Koschel K (1987) Characterization of an Na+/K+/Cl co-transport in primary cultures of rat astrocytes. Biochim Biophys Acta 903:411–416

    Article  CAS  PubMed  Google Scholar 

  101. Chen H, Sun D (2005) The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol Res 27:280–286

    Article  CAS  PubMed  Google Scholar 

  102. Thomas R, Salter MG, Wilke S, Husen A, Allcock N, Nivison M, Nnoli AN, Fern R (2004) Acute ischemic injury of astrocytes is mediated by Na-K-Cl cotransport and not Ca2+ influx at a key point in white matter development. J Neuropathol Exp Neurol 63:856–871

    Article  CAS  PubMed  Google Scholar 

  103. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838

    Article  CAS  PubMed  Google Scholar 

  104. MacVicar BA, Feighan D, Brown A, Ransom B (2002) Intrinsic optical signals in the rat optic nerve: role for K+ uptake via NKCC1 and swelling of astrocytes. Glia 37:114–123

    Article  PubMed  Google Scholar 

  105. Hertz L, Peng L, Song D (2015) Ammonia, like K+, stimulates the Na+, K+, Cl- cotransporter NKCC1 and the Na+, K+-ATPase and interacts with endogenous ouabain in astrocytes. Neurochem Res 40:241–257

    Article  CAS  PubMed  Google Scholar 

  106. Du T, Li B, Li H, Li M, Hertz L, Peng L (2010) Signaling pathways of isoproterenol-induced ERK1/2 phosphorylation in primary cultures of astrocytes are concentration-dependent. J Neurochem 115:1007–1023

    Article  CAS  PubMed  Google Scholar 

  107. Wallace BK, Jelks KA, O’Donnell ME (2012) Ischemia-induced stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransport involves p38 and JNK MAP kinases. Am J Physiol Cell Physiol 302:C505–C517

    Article  CAS  PubMed  Google Scholar 

  108. Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    Article  CAS  PubMed  Google Scholar 

  109. Hansen AJ, Nedergaard M (1998) Brain ion homeostasis in cerebral ischemia. Neurochem Pathol 9:195–209

    Google Scholar 

  110. Song D, Xu J, Du T, Yan E, Hertz L, Walz W, Peng L (2014) Inhibition of brain swelling after ischemia-reperfusion by β-adrenergic antagonists: correlation with increased K+ and decreased Ca2+ concentrations in extracellular fluid. Biomed Res Int 2014:873590

    PubMed  PubMed Central  Google Scholar 

  111. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  PubMed  Google Scholar 

  112. Hertz L, Schousboe A (1975) Ion and energy metabolism of the brain at the cellular level. Int Rev Neurobiol 18:141–211

    Article  CAS  PubMed  Google Scholar 

  113. Chen Y, McNeill JR, Hajek I, Hertz L (1992) Effect of vasopressin on brain swelling at the cellular level: do astrocytes exhibit a furosemide–vasopressin-sensitive mechanism for volume regulation? Can J Physiol Pharmacol 70(Suppl):S367–S373

    Article  CAS  PubMed  Google Scholar 

  114. Olson JE, Holtzman D (1980) Respiration in rat cerebral astrocytes from primary culture. J Neurosci Res 5:497–506

    Article  CAS  PubMed  Google Scholar 

  115. Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci USA 92:4616–4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Takahashi S, Izawa Y, Suzuki N (2012) Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 4:pii:e00078

    Google Scholar 

  117. Hertz L (2011) Astrocytic energy metabolism and glutamate formation–relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn Reson Imaging 29:1319–1329

    Article  CAS  PubMed  Google Scholar 

  118. Nehlig A, Wittendorp-Rechenmann E, Lam CD (2004) Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J Cereb Blood Flow Metab 24:1004–1014

    Article  CAS  PubMed  Google Scholar 

  119. Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD, Sun W, Goldman S, Blekot S, Nielsen M, Takano T, Deane R, Nedergaard M (2015) Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism. Nat Commun 6:6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hertz L, Hertz E (2003) Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem Int 43:355–361

    Article  CAS  PubMed  Google Scholar 

  121. Eriksson G, Peterson A, Iverfeldt K, Walum E (1995) Sodium-dependent glutamate uptake as an activator of oxidative metabolism in primary astrocyte cultures from newborn rat. Glia 15:152–156

    Article  CAS  PubMed  Google Scholar 

  122. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB (2012) The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int 61:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Whitelaw BS, Robinson MB (2013) Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front Endocrinol 4:123

    Article  Google Scholar 

  125. Jackson JG, O’Donnell JC, Krizman E, Robinson MB (2015) Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1-mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins. J Neurosci Res 93:999–1008

    Article  CAS  PubMed  Google Scholar 

  126. Hertz L (1978) An intense potassium uptake into astrocytes, its further enhancement by high concentrations of potassium, and its possible involvement in potassium homeostasis at the cellular level. Brain Res 145:202–208

    Article  CAS  PubMed  Google Scholar 

  127. Walz W, Hertz L (1982) Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J Neurochem 39:70–77

    Article  CAS  PubMed  Google Scholar 

  128. Walz W, Wuttke W, Hertz L (1984) Astrocytes in primary cultures: membrane potential characteristics reveal exclusive potassium conductance and potassium accumulator properties. Brain Res 292:367–374

    Article  CAS  PubMed  Google Scholar 

  129. Su G, Haworth RA, Dempsey RJ, Sun D (2000) Regulation of Na+-K+-Cl cotransporter in primary astrocytes by dibutyryl cAMP and high [K+]o. Am J Physiol Cell Physiol 279:C1710–C1721

    CAS  PubMed  Google Scholar 

  130. Walz W, Kimelberg HK (1985) Differences in cation transport properties of primary astrocyte cultures from mouse and rat brain. Brain Res 340:333–340

    Article  CAS  PubMed  Google Scholar 

  131. Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522:427–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xiong ZQ, Stringer JL (2000) Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J Neurophysiol 8314:1443–1451

    Google Scholar 

  133. D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 87:87–102

    PubMed  Google Scholar 

  134. Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25:349–365

    Article  CAS  PubMed  Google Scholar 

  135. Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N (2014) Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–622

    Article  PubMed  PubMed Central  Google Scholar 

  136. Dufour S, Dufour P, Chever O, Vallée R, Amzica F (2011) In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J Neurosci Methods 194:206–217

    Article  CAS  PubMed  Google Scholar 

  137. Macaulay N, Zeuthen T (2012) Glial K+ clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–2309

    Article  CAS  PubMed  Google Scholar 

  138. Lothman EW, Somjen GG (1975) Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol 252:115–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Futamachi KJ, Pedley TA (1976) Glial cells and extracellular potassium: their relationship in mammalian cortex. Brain Res 109:311–322

    Article  CAS  PubMed  Google Scholar 

  140. Bordey A, Sontheimer H (1997) Postnatal development of ionic currents in rat hippocampal astrocytes in situ. J Neurophysiol 78:461–477

    CAS  PubMed  Google Scholar 

  141. Lund-Andersen H, Hertz L (1970) Effects of potassium content in brain-cortex slices from adult rats. Exp Brain Res 11:199–212

    Article  CAS  PubMed  Google Scholar 

  142. Hertz L, Song D, Xu J, Peng L, Gibbs ME (2015) Role of the astrocytic Na+, K+-ATPase in K+ homeostasis in brain: K+ uptake, signaling pathways and substrate utilization. Neurochem Res 40:2505–2516

    Article  CAS  PubMed  Google Scholar 

  143. Peng L, Juurlink BH, Hertz L (1996) Pharmacological and developmental evidence that the potassium-induced stimulation of deoxyglucose uptake in astrocytes is a metabolic manifestation of increased Na+-K+-ATPase activity. Dev Neurosci 18:353–359

    Article  CAS  PubMed  Google Scholar 

  144. Silver IA, Erecińska M (1997) Energetic demands of the Na+/K+ ATPase in mammalian astrocytes. Glia 21:35–45

    Article  CAS  PubMed  Google Scholar 

  145. Ruminot I, Gutiérrez R, Peña-Münzenmayer G, Añazco C, Sotelo-Hitschfeld T, Lerchundi R, Niemeyer MI, Shull GE, Barros LF (2011) NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31:14264–14271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bittner CX, Valdebenito R, Ruminot I, Loaiza A, Larenas V, Sotelo-HitschfeldT Moldenhauer H, San Martín A, Gutiérrez R, Zambrano M, Barros LF (2011) Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J Neurosci 31:4709–4713

    Article  CAS  PubMed  Google Scholar 

  147. Derouiche A, Haseleu J, Korf HW (2015) Fine astrocyte processes contain very small mitochondria: glial oxidative capability may fuel transmitter metabolism. Neurochem Res 40:2402–2413

    Article  CAS  PubMed  Google Scholar 

  148. Rosenthal M, Sick TJ (1992) Glycolytic and oxidative metabolic contributions to potassium ion transport in rat cerebral cortex. Can J Physiol Pharmacol 70(Suppl):S165–S169

    Article  CAS  PubMed  Google Scholar 

  149. Raffin CN, Rosenthal M, Busto R, Sick TJ (1992) Glycolysis, oxidative metabolism, and brain potassium ion clearance. J Cereb Blood Flow Metab 12:34–42

    Article  CAS  PubMed  Google Scholar 

  150. Hertz L, Chaban G, Hertz E (1980) Abnormal metabolic response to excess potassium in astrocytes from the Jimpy mouse, a convulsing neurological mutant. Brain Res 181:482–487

    Article  CAS  PubMed  Google Scholar 

  151. Keen P, Osborne RH, Pehrson UM (1976) Proceedings: respiration and metabolic compartmentation in brain slices from a glia-deficient mutant, the Jimpy mouse. J Physiol 254:22P–23P

    CAS  PubMed  Google Scholar 

  152. Skoff RP (1976) Myelin deficit in the Jimpy mouse may be due to cellular abnormalities in astroglia. Nature 264:560–562

    Article  CAS  PubMed  Google Scholar 

  153. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertz, L., Chen, Y. & Song, D. Astrocyte Cultures Mimicking Brain Astrocytes in Gene Expression, Signaling, Metabolism and K+ Uptake and Showing Astrocytic Gene Expression Overlooked by Immunohistochemistry and In Situ Hybridization. Neurochem Res 42, 254–271 (2017). https://doi.org/10.1007/s11064-016-1828-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1828-x

Keywords

Navigation