Skip to main content
Log in

Contributions of glycogen to astrocytic energetics during brain activation

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10–12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CMRglc :

Rate of glucose utilization

CMRO2 :

Rate of oxygen utilization

DG:

2-deoxy-D-glucose

DG-1-P:

Deoxyglucose-1-phosphate

DG-6-P:

Deoxyglucose-6-phosphate

Glc:

Glucose

Glc-6-P:

Glucose-6-phosphate

Lac:

Lactate

Pyr:

Pyruvate

TCA:

Tricarboxylic acid

References

  • Adachi K, Cruz NF, Sokoloff L, Dienel GA (1995) Labeling of metabolic pools by [6-14C]glucose during K(+)-induced stimulation of glucose utilization in rat brain. J Cereb Blood Flow Metab 15(1):97–110. doi:10.1038/jcbfm.1995.11

    CAS  PubMed  Google Scholar 

  • Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [(14)C]glucose metabolite trafficking. J Neurosci Res 85(15):3267–3283. doi:10.1002/jnr.21376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ball KK, Cruz NF, Mrak RE, Dienel GA (2010) Trafficking of glucose, lactate, and amyloid-beta from the inferior colliculus through perivascular routes. J Cereb Blood Flow Metab 30(1):162–176. doi:10.1038/jcbfm.2009.206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci Off J Soc Neurosci 30(42):13983–13991. doi:10.1523/JNEUROSCI.2040-10.2010

    CAS  Google Scholar 

  • Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 23(11):1298–1306. doi:10.1097/01.wcb.0000091761.61714.25

    CAS  PubMed  Google Scholar 

  • Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24(6):1687–1694. doi:10.1111/j.1460-9568.2006.05056.x

    PubMed  Google Scholar 

  • Bradbury MWB, Cserr HF (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston MG (ed) Experimental biology of the lymphatic circulation. Research monographs in cell and tissue physiology, vol 9. Elsevier, New York, pp 355–394

    Google Scholar 

  • Bradbury MW, Westrop RJ (1983) Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol 339:519–534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89(3):537–552. doi:10.1111/j.1471-4159.2004.02421.x

    CAS  PubMed  Google Scholar 

  • Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55(12):1263–1271. doi:10.1002/glia.20557

    PubMed  Google Scholar 

  • Brown AM, Sickmann HM, Fosgerau K, Lund TM, Schousboe A, Waagepetersen HS, Ransom BR (2005) Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J Neurosci Res 79(1–2):74–80. doi:10.1002/jnr.20335

    CAS  PubMed  Google Scholar 

  • Brown AM, Evans RD, Black J, Ransom BR (2012) Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol 72(3):406–418. doi:10.1002/ana.23607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunner EA, Passonneau JV, Molstad C (1971) The effect of volatile anaesthetics on levels of metabolites and on metabolic rate in brain. J Neurochem 18(12):2301–2316

    CAS  PubMed  Google Scholar 

  • Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144. doi:10.1111/j.1365-2990.2007.00926.x

    CAS  PubMed  Google Scholar 

  • Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions: I. Neurons and glia. J Electron Microsc Tech 3(4):413–437. doi:10.1002/jemt.1060030406

    CAS  Google Scholar 

  • Cetin N, Ball K, Gokden M, Cruz NF, Dienel GA (2003) Effect of reactive cell density on net [2-14C]acetate uptake into rat brain: labeling of clusters containing GFAP+- and lectin+-immunoreactive cells. Neurochem Int 42(5):359–374

    CAS  PubMed  Google Scholar 

  • Chih CP, Roberts EL Jr (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23(11):1263–1281. doi:10.1097/01.wcb.0000081369.51727.6f

    CAS  PubMed  Google Scholar 

  • Chih CP, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24(10):573–578

    CAS  PubMed  Google Scholar 

  • Choi IY, Gruetter R (2003) In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int 43(4–5):317–322

    CAS  PubMed  Google Scholar 

  • Choi IY, Tkac I, Ugurbil K, Gruetter R (1999) Noninvasive measurements of [1-(13)C]glycogen concentrations and metabolism in rat brain in vivo. J Neurochem 73(3):1300–1308

    CAS  PubMed  Google Scholar 

  • Choi IY, Lee SP, Kim SG, Gruetter R (2001) In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 21(6):653–663. doi:10.1097/00004647-200106000-00003

    CAS  PubMed  Google Scholar 

  • Choi IY, Seaquist ER, Gruetter R (2003) Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 72(1):25–32. doi:10.1002/jnr.10574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, Macvicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75(6):1094–1104. doi:10.1016/j.neuron.2012.08.032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper AJ (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37(11):2439–2455. doi:10.1007/s11064-012-0803-4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cremer JE, Seville MP (1983) Regional brain blood flow, blood volume, and haematocrit values in the adult rat. J Cereb Blood Flow Metab 3(2):254–256. doi:10.1038/jcbfm.1983.35

    CAS  PubMed  Google Scholar 

  • Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22(12):1476–1489. doi:10.1097/00004647-200212000-00008

    CAS  PubMed  Google Scholar 

  • Cruz NF, Adachi K, Dienel GA (1999) Rapid efflux of lactate from cerebral cortex during K+-induced spreading cortical depression. J Cereb Blood Flow Metab 19(4):380–392. doi:10.1097/00004647-199904000-00004

    CAS  PubMed  Google Scholar 

  • Cruz NF, Lasater A, Zielke HR, Dienel GA (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92(4):934–947. doi:10.1111/j.1471-4159.2004.02935.x

    CAS  PubMed  Google Scholar 

  • Cruz NF, Ball KK, Froehner SC, Adams ME, Dienel GA (2013) Regional registration of [6-14C]glucose metabolism during brain activation of α-syntrophin knockout mice. J Neurochem 125(2):247–259. doi:10.1111/jnc.12166

    CAS  Google Scholar 

  • Dalsgaard MK, Madsen FF, Secher NH, Laursen H, Quistorff B (2007) High glycogen levels in the hippocampus of patients with epilepsy. J Cereb Blood Flow Metab 27(6):1137–1141. doi:10.1038/sj.jcbfm.9600426

    CAS  PubMed  Google Scholar 

  • de Graaf RA, Rothman DL, Behar KL (2011) State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo. A practical guide. NMR Biomed 24(8):958–972. doi:10.1002/nbm.1761

    PubMed Central  PubMed  Google Scholar 

  • Dienel GA (2004) Lactate muscles its way into consciousness: fueling brain activation. Am J Physiol Regul Integr Comp Physiol 287(3):R519–R521. doi:10.1152/ajpregu.00377.2004

    CAS  PubMed  Google Scholar 

  • Dienel GA (2012a) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32(7):1107–1138. doi:10.1038/jcbfm.2011.175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dienel GA (2012b) Fueling and imaging brain activation. ASN Neuro 4(5):art:e00093. doi:10.1042/an20120021

    Google Scholar 

  • Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63(4):244–258. doi:10.1016/j.neuint.2013.06.015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dienel GA, Cruz NF (1993) Synthesis of deoxyglucose-1-phosphate, deoxyglucose-1,6-bisphosphate, and other metabolites of 2-deoxy-D-[14C]glucose in rat brain in vivo: influence of time and tissue glucose level. J Neurochem 60(6):2217–2231

    CAS  PubMed  Google Scholar 

  • Dienel GA, Cruz NF (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 45(2–3):321–351. doi:10.1016/j.neuint.2003.10.011

    CAS  PubMed  Google Scholar 

  • Dienel GA, Cruz NF (2008) Imaging brain activation: simple pictures of complex biology. Ann N Y Acad Sci 1147:139–170. doi:10.1196/annals.1427.011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dienel GA, Cruz NF (2009) Exchange-mediated dilution of brain lactate specific activity: implications for the origin of glutamate dilution and the contributions of glutamine dilution and other pathways. J Neurochem 109(Suppl 1):30–37. doi:10.1111/j.1471-4159.2009.05859.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dienel GA, Nelson T, Cruz NF, Jay T, Crane AM, Sokoloff L (1988) Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites. J Biol Chem 263(36):19697–19708

    CAS  PubMed  Google Scholar 

  • Dienel GA, Cruz NF, Mori K, Sokoloff L (1990) Acid lability of metabolites of 2-deoxyglucose in rat brain: implications for estimates of kinetic parameters of deoxyglucose phosphorylation and transport between blood and brain. J Neurochem 54(4):1440–1448

    CAS  PubMed  Google Scholar 

  • Dienel GA, Cruz NF, Mori K, Holden JE, Sokoloff L (1991) Direct measurement of the lambda of the lumped constant of the deoxyglucose method in rat brain: determination of lambda and lumped constant from tissue glucose concentration or equilibrium brain/plasma distribution ratio for methylglucose. J Cereb Blood Flow Metab 11(1):25–34. doi:10.1038/jcbfm.1991.3

    CAS  PubMed  Google Scholar 

  • Dienel GA, Cruz NF, Sokoloff L (1993) Metabolites of 2-deoxy-[14C]glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. J Cereb Blood Flow Metab 13(2):315–327. doi:10.1038/jcbfm.1993.40

    CAS  PubMed  Google Scholar 

  • Dienel GA, Liu K, Popp D, Cruz NF (1999) Enhanced acetate and glucose utilization during graded photic stimulation. Neuronal-glial interactions in vivo. Ann N Y Acad Sci 893:279–281

    CAS  PubMed  Google Scholar 

  • Dienel GA, Liu K, Cruz NF (2001a) Local uptake of (14)C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression. J Neurosci Res 66(5):812–820

    CAS  PubMed  Google Scholar 

  • Dienel GA, Popp D, Drew PD, Ball K, Krisht A, Cruz NF (2001b) Preferential labeling of glial and meningial brain tumors with [2-(14)C]acetate. J Nucl Med 42(8):1243–1250

    CAS  PubMed  Google Scholar 

  • Dienel GA, Wang RY, Cruz NF (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 22(12):1490–1502. doi:10.1097/00004647-200212000-00009

    CAS  PubMed  Google Scholar 

  • Dienel GA, Cruz NF, Ball K, Popp D, Gokden M, Baron S, Wright D, Wenger GR (2003) Behavioral training increases local astrocytic metabolic activity but does not alter outcome of mild transient ischemia. Brain Res 961(2):201–212

    CAS  PubMed  Google Scholar 

  • Dienel GA, Ball KK, Cruz NF (2007a) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102(2):466–478. doi:10.1111/j.1471-4159.2007.04595.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dienel GA, Schmidt KC, Cruz NF (2007b) Astrocyte activation in vivo during graded photic stimulation. J Neurochem 103(4):1506–1522. doi:10.1111/j.1471-4159.2007.04859.x

    CAS  PubMed  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30(12):1895–1904. doi:10.1038/jcbfm.2010.151

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiNuzzo M, Maraviglia B, Giove F (2011) Why does the brain (not) have glycogen? Bioessays 33(5):319–326. doi:10.1002/bies.201000151

    CAS  PubMed  Google Scholar 

  • Dinuzzo M, Mangia S, Maraviglia B, Giove F (2012) The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res. doi:10.1007/s11064-012-0802-5

    Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993a) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623(2):208–214

    CAS  PubMed  Google Scholar 

  • Dringen R, Schmoll D, Cesar M, Hamprecht B (1993b) Incorporation of radioactivity from [14C]lactate into the glycogen of cultured mouse astroglial cells. Evidence for gluconeogenesis in brain cells. Biol Chem Hoppe Seyler 374(5):343–347

    CAS  PubMed  Google Scholar 

  • Duran J, Tevy MF, Garcia-Rocha M, Calbo J, Milan M, Guinovart JJ (2012) Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol Med 4(8):719–729. doi:10.1002/emmm.201200241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-Garcia JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33(4):550–556. doi:10.1038/jcbfm.2012.200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Folbergrova J, Ingvar M, Siesjo BK (1981) Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J Neurochem 37(5):1228–1238

    CAS  PubMed  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464

    CAS  PubMed  Google Scholar 

  • Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009a) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111(2):522–536. doi:10.1111/j.1471-4159.2009.06333.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandhi GK, Cruz NF, Ball KK, Theus SA, Dienel GA (2009b) Selective astrocytic gap junctional trafficking of molecules involved in the glycolytic pathway: impact on cellular brain imaging. J Neurochem 110(3):857–869. doi:10.1111/j.1471-4159.2009.06173.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gatfield PD, Lowry OH, Schulz DW, Passonneau JV (1966) Regional energy reserves in mouse brain and changes with ischaemia and anaesthesia. J Neurochem 13(3):185–195

    CAS  PubMed  Google Scholar 

  • Ghajar JB, Plum F, Duffy TE (1982) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J Neurochem 38(2):397–409

    CAS  PubMed  Google Scholar 

  • Gibbs ME, Hutchinson DS (2012) Rapid turnover of glycogen in memory formation. Neurochem Res. doi:10.1007/s11064-012-0805-2

    PubMed  Google Scholar 

  • Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54(3):214–222. doi:10.1002/glia.20377

    PubMed  Google Scholar 

  • Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85(15):3326–3333. doi:10.1002/jnr.21307

    CAS  PubMed  Google Scholar 

  • Gotoh J, Itoh Y, Kuang TY, Cook M, Law MJ, Sokoloff L (2000) Negligible glucose-6-phosphatase activity in cultured astroglia. J Neurochem 74(4):1400–1408

    CAS  PubMed  Google Scholar 

  • Gross RA, Ferrendelli JA (1980) Mechanisms of cyclic AMP regulation in cerebral anoxia and their relationship to glycogenolysis. J Neurochem 34(5):1309–1318

    CAS  PubMed  Google Scholar 

  • Gruetter R (2003) Glycogen: the forgotten cerebral energy store. J Neurosci Res 74(2):179–183. doi:10.1002/jnr.10785

    CAS  PubMed  Google Scholar 

  • Grunwald F, Schrock H, Theilen H, Biber A, Kuschinsky W (1988) Local cerebral glucose utilization of the awake rat during chronic administration of nicotine. Brain Res 456(2):350–356

    CAS  PubMed  Google Scholar 

  • Hargreaves RJ, Planas AM, Cremer JE, Cunningham VJ (1986) Studies on the relationship between cerebral glucose transport and phosphorylation using 2-deoxyglucose. J Cereb Blood Flow Metab 6(6):708–716. doi:10.1038/jcbfm.1986.127

    CAS  PubMed  Google Scholar 

  • Harik SI, Busto R, Martinez E (1982) Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. J Neurosci Off J Soc Neurosci 2(4):409–414

    CAS  Google Scholar 

  • Hawkins RA, Miller AL (1978) Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brains of conscious rats: implications for quantitative autoradiographic determination of regional glucose utilization. Neuroscience 3(2):251–258

    CAS  PubMed  Google Scholar 

  • Hawkins RA, Miller AL, Nielsen RC, Veech RL (1973) The acute action of ammonia on rat brain metabolism in vivo. Biochem J 134(4):1001–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hertz L, Gibbs ME (2009) What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism. J Neurochem 109(Suppl 1):10–16. doi:10.1111/j.1471-4159.2009.05939.x

    CAS  PubMed  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249. doi:10.1038/sj.jcbfm.9600343

    CAS  PubMed  Google Scholar 

  • Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS (2008) Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology 149(4):1499–1504. doi:10.1210/en.2007-1252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci Off J Soc Neurosci 8(6):1922–1928

    CAS  Google Scholar 

  • Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L (1991) Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Metab 11(2):171–182. doi:10.1038/jcbfm.1991.50

    CAS  PubMed  Google Scholar 

  • Horinaka N, Artz N, Jehle J, Takahashi S, Kennedy C, Sokoloff L (1997) Examination of potential mechanisms in the enhancement of cerebral blood flow by hypoglycemia and pharmacological doses of deoxyglucose. J Cereb Blood Flow Metab 17(1):54–63. doi:10.1097/00004647-199701000-00008

    CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111. doi:10.1126/scitranslmed.3003748

    PubMed Central  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci Off J Soc Neurosci 33(46):18190–18199. doi:10.1523/jneurosci.1592-13.2013

    CAS  Google Scholar 

  • Karnovsky ML, Reich P, Anchors JM, Burrows BL (1983) Changes in brain glycogen during slow-wave sleep in the rat. J Neurochem 41(5):1498–1501

    CAS  PubMed  Google Scholar 

  • Koh L, Zakharov A, Johnston M (2005) Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2:6. doi:10.1186/1743-8454-2-6

    PubMed Central  PubMed  Google Scholar 

  • Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22(13):5581–5587

    CAS  PubMed  Google Scholar 

  • Lowry OH, Passonneau JV (1964) The relationships between substrates and enzymes of glycolysis in brain. J Biol Chem 239:31–42

    CAS  PubMed  Google Scholar 

  • Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    CAS  PubMed  Google Scholar 

  • Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S, Wildschiodtz G, Paulson OB, Lassen NA (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15(3):485–491. doi:10.1038/jcbfm.1995.60

    CAS  PubMed  Google Scholar 

  • Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19(4):393–400. doi:10.1097/00004647-199904000-00005

    CAS  PubMed  Google Scholar 

  • Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci U S A 78(10):6535–6539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masamoto K, Kanno I (2012) Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32(7):1233–1247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morgenthaler FD, van Heeswijk RB, Xin L, Laus S, Frenkel H, Lei H, Gruetter R (2008) Non-invasive quantification of brain glycogen absolute concentration. J Neurochem 107(5):1414–1423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mori K, Cruz N, Dienel G, Nelson T, Sokoloff L (1989) Direct chemical measurement of the lambda of the lumped constant of the [14C]deoxyglucose method in rat brain: effects of arterial plasma glucose level on the distribution spaces of [14C]deoxyglucose and glucose and on lambda. J Cereb Blood Flow Metab 9(3):304–314. doi:10.1038/jcbfm.1989.48

    CAS  PubMed  Google Scholar 

  • Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M (2006) Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 291(5):R1383–R1389. doi:10.1152/ajpregu.00235.2006

    CAS  PubMed  Google Scholar 

  • Nelson SR, Schulz DW, Passonneau JV, Lowry OH (1968) Control of glycogen levels in brain. J Neurochem 15(11):1271–1279

    CAS  PubMed  Google Scholar 

  • Nelson T, Lucignani G, Atlas S, Crane AM, Dienel GA, Sokoloff L (1985) Reexamination of glucose-6-phosphatase activity in the brain in vivo: no evidence for a futile cycle. Science 229(4708):60–62

    CAS  PubMed  Google Scholar 

  • Newman GC, Hospod FE, Maghsoudlou B, Patlak CS (1996) Simplified brain slice glucose utilization. J Cereb Blood Flow Metab 16(5):864–880. doi:10.1097/00004647-199609000-00011

    CAS  PubMed  Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 6(12):e28427. doi:10.1371/journal.pone.0028427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4:3. doi:10.3389/fnene.2012.00003

    CAS  Google Scholar 

  • Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF (1967) Brain metabolism during fasting*. J Clin Investig 46(10):1589–1595. doi:10.1172/jci105650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Öz G, Henry PG, Seaquist ER, Gruetter R (2003) Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 43(4–5):323–329

    PubMed  Google Scholar 

  • Passonneau JV, Lowry OH (1993) Enzymatic analysis. A practical guide. Humana Press, Totowa

    Google Scholar 

  • Rahman B, Kussmaul L, Hamprecht B, Dringen R (2000) Glycogen is mobilized during the disposal of peroxides by cultured astroglial cells from rat brain. Neurosci Lett 290(3):169–172

    CAS  PubMed  Google Scholar 

  • Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326(1):47–63

    CAS  PubMed  Google Scholar 

  • Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439

    CAS  PubMed  Google Scholar 

  • Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL (2011) 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24(8):943–957. doi:10.1002/nbm.1772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sagar SM, Sharp FR, Swanson RA (1987) The regional distribution of glycogen in rat brain fixed by microwave irradiation. Brain Res 417(1):172–174

    CAS  PubMed  Google Scholar 

  • Schmidt K, Lucignani G, Mori K, Jay T, Palombo E, Nelson T, Pettigrew K, Holden JE, Sokoloff L (1989) Refinement of the kinetic model of the 2-[14C]deoxyglucose method to incorporate effects of intracellular compartmentation in brain. J Cereb Blood Flow Metab 9(3):290–303. doi:10.1038/jcbfm.1989.47

    CAS  PubMed  Google Scholar 

  • Schmoll D, Fuhrmann E, Gebhardt R, Hamprecht B (1995) Significant amounts of glycogen are synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation of the mitochondrial phosphoenolpyruvate carboxykinase isoenzyme. Eur J Biochem FEBS 227(1–2):308–315

    CAS  Google Scholar 

  • Schousboe A, Sickmann HM, Walls AB, Bak LK, Waagepetersen HS (2010) Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox Res 18(1):94–99. doi:10.1007/s12640-010-9171-5

    PubMed  Google Scholar 

  • Shetty PK, Sadgrove MP, Galeffi F, Turner DA (2012) Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation. Neurobiol Dis 45(1):177–187. doi:10.1016/j.nbd.2011.08.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci U S A 98(11):6417–6422. doi:10.1073/pnas.101129298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30(10):1295–1304. doi:10.1007/s11064-005-8801-4

    CAS  PubMed  Google Scholar 

  • Sickmann HM, Walls AB, Schousboe A, Bouman SD, Waagepetersen HS (2009) Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem 109(Suppl 1):80–86. doi:10.1111/j.1471-4159.2009.05915.x

    CAS  PubMed  Google Scholar 

  • Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2010) Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis. J Cereb Blood Flow Metab 30(8):1527–1537. doi:10.1038/jcbfm.2010.61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2012) Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem Int 60(3):267–275. doi:10.1016/j.neuint.2011.12.019

    CAS  PubMed  Google Scholar 

  • Siesjö BK (1978) Brain energy metabolism. Wiley, Chichester

    Google Scholar 

  • Sokoloff L (2000) In vivo veritas: probing brain function through the use of quantitative in vivo biochemical techniques. Annu Rev Physiol 62:1–24. doi:10.1146/annurev.physiol.62.1.1

    CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    CAS  PubMed  Google Scholar 

  • Sotelo C, Palay SL (1968) The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells. J Cell Biol 36(1):151–179

    PubMed Central  Google Scholar 

  • Stewart MA, Passonneau JV, Lowry OH (1965) Substrate changes in peripheral nerve during ischaemia and Wallerian degeneration. J Neurochem 12(8):719–727

    CAS  PubMed  Google Scholar 

  • Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*, S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)pro pyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321(1):45–50. doi:10.1124/jpet.106.115550

    CAS  PubMed  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823. doi:10.1016/j.cell.2011.02.018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70(Suppl):S138–S144

    CAS  PubMed  Google Scholar 

  • Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51(2):451–461

    CAS  PubMed  Google Scholar 

  • Tabernero A, Giaume C, Medina JM (1996) Endothelin-1 regulates glucose utilization in cultured astrocytes by controlling intercellular communication through gap junctions. Glia 16(3):187–195.

    CAS  PubMed  Google Scholar 

  • Tabernero A, Medina JM, Giaume C (2006) Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem 99(4):1049–1061. doi:10.1111/j.1471-4159.2006.04088.x

    CAS  PubMed  Google Scholar 

  • Tesfaye N, Seaquist ER, Öz G (2011) Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism. J Neurosci Res 89(12):1905–1912. doi:10.1002/jnr.22703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valles-Ortega J, Duran J, Garcia-Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Canas X, Soriano E, Delgado-Garcia JM, Gruart A, Guinovart JJ (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3(11):667–681. doi:10.1002/emmm.201100174

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29(6):1121–1129. doi:10.1038/jcbfm.2009.35

    PubMed  Google Scholar 

  • van Heeswijk RB, Morgenthaler FD, Xin L, Gruetter R (2010) Quantification of brain glycogen concentration and turnover through localized 13C NMR of both the C1 and C6 resonances. NMR Biomed 23(3):270–276. doi:10.1002/nbm.1460

    PubMed  Google Scholar 

  • van Heeswijk RB, Pilloud Y, Morgenthaler FD, Gruetter R (2012) A comparison of in vivo 13C MR brain glycogen quantification at 9.4 and 14.1 T. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 67(6):1523–1527. doi:10.1002/mrm.23192

    Google Scholar 

  • Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10(11):1407–1413. doi:10.1038/nn1998

    CAS  PubMed  Google Scholar 

  • Walls AB, Heimbürger CM, Bouman SD, Schousboe A, Waagepetersen HS (2009) Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience 158(1):284–292. doi:10.1016/j.neuroscience.2008.09.058

    CAS  PubMed  Google Scholar 

  • Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36(4–5):291–300. doi:10.1016/S0197-0186(99)00137-0

    CAS  PubMed  Google Scholar 

  • Watanabe H, Passonneau JV (1973) Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J Neurochem 20(6):1543–1554

    CAS  PubMed  Google Scholar 

  • Weller RO, Preston SD, Subash M, Carare RO (2009) Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res Ther 1(2):6. doi:10.1186/alzrt6

    PubMed Central  PubMed  Google Scholar 

  • Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057

    CAS  PubMed  Google Scholar 

  • Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38(3):472–485. doi:10.1007/s11064-012-0938-3

    Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by National Institutes of Health grants DK081936, NS038230, and NS36728. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald A. Dienel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dienel, G.A., Cruz, N.F. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 30, 281–298 (2015). https://doi.org/10.1007/s11011-014-9493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9493-8

Keywords

Navigation