Skip to main content

Advertisement

Log in

Vernalization of Oriental hybrid lily ‘Sorbonne’: changes in physiology metabolic activity and molecular mechanism

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oriental hybrid lily ‘Sorbonne’ was used to investigate molecular changes during the storage at 4 °C for dormancy-release besides physiology metabolic activity observations. In physiological mechanism, endogenous abscisic acid (ABA) concentration level of lily bulbs decreased as the cold preservation time increased, and it kept at a stable level after being preserved for 35 days. The level of soluble sugars concentrations also changed during the cold preservation time, and it increased as the cold preservation time raised to 49 days then decreased afterward. On molecule level, a new transcriptome providing comprehensive sequence profiling data of variation during dormancy-release in lily was constructed. 34,367 unigenes expressed differentially between the control and the treatment was analyzed. 14 genes including 8 MADS-box family genes, 4 genes related to plant hormone, and 2 DNA methylation genes were selected to identify the levels of their expression by qRT-PCR. Our results show that the decrease of ABA level during cold storage, as well as changes in plant hormone genes was correlated with dormancy-release; MADS-box family genes VRN2, FLC, FT, SOC1 a, as well as LFY, MIKC and ARF, MYB transcription factor were included in lily floral induction and DNA methylation was correlated to lily vernalization under low temperature. According to the results of the present studies, we predicted that plant hormone pathway, energy metabolic pathway, vernalization pathway, and DNA methylation played important roles during vernalization; these data provided the foundation for future studies of vernalization to induce flowering of lily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

BLAST:

Basic local alignment search tool

COG:

Cluster of orthologous group

EST:

Expressed sequence tag

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

NCBI:

National Center for Biotechnology Information

qRT-PCR:

Real-time quantitative reverse transcription polymerase chain reaction

References

  1. Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143(3):1163–1172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Aguettaz P, Paffen A, Delvallée I, Van der Linde P, De Klerk GJ (1990) The development of dormancy in bulblets of Lilium speciosum generated in vitroI. The effects of culture conditions. Plant Cell Tissue Organ Cult 22:167–172

    Article  Google Scholar 

  3. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    Article  CAS  PubMed  Google Scholar 

  4. Buzas DM, Robertson M, Finnegan EJ, Helliwell CA (2011) Transcription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC. Plant J 65:872–881

    Article  CAS  PubMed  Google Scholar 

  5. Chincinska IA, Liesche J, KriigeL U, Michalska J, Geigenberger P, Grimm B, Kuhn C (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberizalion, and shade avoidance response. Plant Physiol 146(2):515–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  7. Crawford JE, Guelbeogo WM, Sanou A, Traoré A, Vernick KD, Sagnon NF, Lazzaro BP (2010) De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology. PLoS ONE 5(12):14202

    Article  Google Scholar 

  8. Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent CC, Immink RGH (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf like characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev 25:277–299

    Article  CAS  Google Scholar 

  10. Koshita Y, Takahara T, Ogata T, Goto A (1999) Involvement of endogenous plant hormones (lAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus iiushiu Marc.). Sci Hortic 79(3-4):185–194

    Article  CAS  Google Scholar 

  11. Langens-Gerrits MM, Miller WBM, Croes AF, De Klerk GJ (2003) Effect of low temperature on dormancy breaking and growth after planting in lily bulblets regenerated in vitro. Plant Growth Regul 40:267–275

    Article  CAS  Google Scholar 

  12. Langens-Gerrits MM, Nashimoto S, Croes AF, De Klerk GJ (2001) Development of dormancy in different lily genotypes regenerated in vitro. Plant Growth Regul 34:215–222

    Article  CAS  Google Scholar 

  13. Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843

    Article  CAS  PubMed  Google Scholar 

  14. Liu GQ, Li WS, Zheng PH, Xu T, Chen LJ, Liu DF, Hussain S, Teng YW (2012) Tanscriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia ear group) buds during the dormancy by NA-seq. BMC Genom 13:700–718

    Article  CAS  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:182–185

    Article  Google Scholar 

  17. Ohto MA, Onai KS, Furukawa Y, Aoki E, Araki T, Makamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127(1):252–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Samach A, Onouchi H, Gold SE, Ditta GS, Sommer ZS, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  19. Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Seo E, Lee H, Jeon J, Park H, Kim J, Noh YS, Lee I (2009) Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21:3185–3197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H (2012) Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol 51(2):160–173

    Article  CAS  PubMed  Google Scholar 

  22. Shin KS, Chakrabarty D, Paek KY (2002) Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro. Sci Hortic 96:195–204

    Article  CAS  Google Scholar 

  23. Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  25. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133(21):4211–4218

    Article  CAS  PubMed  Google Scholar 

  26. Yamazaki H, Nishijima T, Koshioka M, Miura H (2002) Gibberellins do not act against abscisic acid in the regulation of bulb dormancy of Allium wakegi Araki. Plant Growth Regul 36:223–229

    Article  CAS  Google Scholar 

  27. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(suppl 2):293–297

    Article  Google Scholar 

  28. Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res 39(suppl 1):1118–1122

    Article  Google Scholar 

  29. Zhang DQ, Xu BH, Yang XH, Zhang ZY, Li BL (2011) The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genomes 7:443–456

    Article  Google Scholar 

  30. Zhang DQ, Du Q, Xu BH, Zhang ZY, Li BL (2010) The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genomics 284:105–119

    Article  CAS  PubMed  Google Scholar 

  31. Zhang JX, Wu KL, Zeng SJ, TDdS Jaime A, Zhao XL, Tian CE, Xia HQ, Duan J (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genom 14:279–292

    Article  Google Scholar 

  32. Zhao C, Hanada A, Yamaguchi S, Kamiya Y, Beers EP (2011) The Arabidopsis MYB genes MYR1 and MYR2 are redundant negative regulators of flowering time under decreased light intensity. Plant J 66(3):502–515

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like 15. Plant Cell 21(9):2563–2577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zou Q (2000) Plant physiology experiment instruction. China Agriculture Press, Beijing, pp 33–50

    Google Scholar 

Download references

Acknowledgments

This work was supported by the China National Natural Science Foundation (Grant numbers 31071815 and 31272204), ‘863’ research program (Grant number 2011AA10020804), and the D. Programs Foundation of the Ministry of Education of China (Grant number 20110014110006).

Conflict of interest

All authors state that they have no interest conflict.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingmin Lü.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, Q., Gu, J. et al. Vernalization of Oriental hybrid lily ‘Sorbonne’: changes in physiology metabolic activity and molecular mechanism. Mol Biol Rep 41, 6619–6634 (2014). https://doi.org/10.1007/s11033-014-3545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3545-3

Keywords

Navigation