Skip to main content
Log in

The actin multigene family in Populus: organization, expression and phylogenetic analysis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Despite the significance of actin in plant growth and development, little is known of the structure, expression and evolution of the actin gene family in woody plants. In this study, we systematically examined the diversification of the actin gene family in Populus by integrating genomic organization, expression, and phylogeny data. Genome-wide analysis of the Populus genome indicated that actin is a multigene family consisting of eight members, all predicted to encode 377-amino acid polypeptides that share high sequence homology ranging from 94.2 to 100% identity. Microarray and real-time PCR expression analysis showed that the PtrACT family members are differentially expressed in different tissues, exhibiting overlapping and unique expression patterns. Of particular interest, all PtrACT genes have been found to be preferentially expressed in the stem phloem and xylem, suggesting that poplar PtrACTs are involved in the wood formation. Gene structural and phylogenetic analyses revealed that the PtrACT family is composed of two main subgroups that share an ancient common ancestor. Extremely high intraspecies synonymous nucleotide diversity of πsyn = 0.01205 was detected, and the πnon-synsyn ratio was significantly less than 1; therefore, the PtACT1 appears to be evolving in Populus, primarily under purifying selection. We demonstrated that the actin gene family in Populus is divided into two distinct subgroups, suggesting functional divergence. The results reported here will be useful in conducting future functional genomics studies to understand the detailed function of actin genes in tree growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Blancaflor EB (2002) The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul 21:120–136

    Article  CAS  PubMed  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. PNAS 10142:15255–15260

    Article  Google Scholar 

  • Chaffey N, Barlow P, Sundberg B (2002) Understanding the role of the cytoskeleton in wood formation in angiosperm trees: hybrid aspen (Populus tremula × P. tremuloides) as the model species. Tree Physiol 22:239–249

    CAS  PubMed  Google Scholar 

  • Daniel HM, Meyer W (2003) Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. Int J Food Microbiol 86:61–78

    Article  CAS  PubMed  Google Scholar 

  • Daniel HM, Sorrell TC, Meyer W (2001) Partial sequence analysis of the actin gene and its potential for studying the phylogeny of Candida species and their teleomorphs. Int J Syst Evol Microbiol 51:1593–1606

    CAS  PubMed  Google Scholar 

  • Djerbi S, Aspeborg H, Nilsson P, Sundberg B, Mellerowicz E, Blomqvist K, Teeri TT (2004) Identification and expression analysis of genes encoding putative cellulose synthases (CesA) in the hybrid aspen, Populus tremula (L.) × P. tremuloides (Michx.). Cellulose 11:301–312

    Article  CAS  Google Scholar 

  • Droltin G, Dover GA (1990) Independent gene evolution in the potato actin gene family demonstrated by phylogenetic procedures for resolving gene conversions and the phylogeny of angiosperm actin genes. J Mol Evol 31:132–150

    Article  Google Scholar 

  • Foissner I, Lichtscheidl IK, Wasteneys GO (1996) Actin-based vesicle dynamics and exocytosis during wound wall formation in Characean internodal cells. Cell Motil Cytoskeleton 35:35–48

    Article  CAS  PubMed  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  Google Scholar 

  • Fukuda H, Kobayashi H (1989) Dynamic organization of the cytoskeleton during tracheary-element differentiation. Develop Growth Differ 31:9–16

    Article  Google Scholar 

  • Heuertz M, Paoli ED, Källman T, Larsson H, Jurman I, Morgante M et al (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway Spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105

    Article  CAS  PubMed  Google Scholar 

  • Hightower RC, Meagher RB (1985) Divergence and differential expression of soybean actin genes. EMBO J 4:1–8

    CAS  PubMed  Google Scholar 

  • Huang ZH (1992) The study on the climatic regionalization of the distributional region of Populus tomentosa. J Beijing For Univ 14:26–32

    CAS  Google Scholar 

  • Huang S, An YQ, McDowell JM, McKinney EC, Meagher RB (1997) The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Mol Biol 33:125–139

    Article  CAS  PubMed  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125

    Article  CAS  PubMed  Google Scholar 

  • Ingvarsson PK (2008) Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics 180:329–340

    Article  PubMed  Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness-and wood quality-related candidate genes in Douglas Fir. Genetics 171:2029–2041

    Article  CAS  PubMed  Google Scholar 

  • Li XB, Fan XP, Wang XL, Lin Cai, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wu HX, Dillon SK, Southerton SG (2009) Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics 2009(10):41

    Article  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • McDowell JM, Huang S, McKinney EC, An YQ, Meagher RB (1996) Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142:587–602

    CAS  PubMed  Google Scholar 

  • McElroy D, Rothenberg M, Reece KS, Wu R (1990a) Characterization of the rice (Oryza sativa) actin gene family. Plant Mol Biol 15:257–268

    Article  CAS  PubMed  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990b) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  CAS  PubMed  Google Scholar 

  • McLean BG, Eubanks S, Meagher RB (1990) Tissue specific expression of divergent actins in soybean root. Plant Cell 2:335–344

    Article  CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300

    Article  CAS  PubMed  Google Scholar 

  • Moniz de Sa M, Drouin G (1996) Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 13:1198–1212

    CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Quang ND, Ikeda S, Harada K (2008) Nucleotide variation in Quercus crispula Blume. Heredity 101:166–174

    Article  CAS  PubMed  Google Scholar 

  • Reece KS, McElroy D, Wu R (1990) Genomic nucleotide sequence of four rice (Oryza sativa) actin genes. Plant Mol Biol 14:621–624

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Shah DM, Hightower RC, Meagher RB (1983) Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not. J Mol Appl Genet 2:111–126

    CAS  PubMed  Google Scholar 

  • Sjödin A, Bylesjö M, Skogström O, Eriksson D, Nilsson P, Rydén P, Jansson S et al (2006) UPSC-BASE—Populus transcriptomics online. Plant J 48:806–817

    Article  PubMed  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295

    Article  CAS  PubMed  Google Scholar 

  • Staiger CJ (2000) Signalling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51:257–288

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Takagi S (2000) Roles for actin filaments in chloroplast motility and anchoring. In: Staiger C (ed) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 203–212

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Timonen S, Peterson RL (2002) Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244:199–210

    Article  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:188–193

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fundamental Research Funds for the Central Universities (No. BLJC200906), the project of National Natural Science Foundation of China (No. 30600479, 30872042), Major Science Foundation of Ministry of Education of China (No. 307006), A Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 200770), and Introduction of Foreign Advanced Agricultural Science and Technology into China (No. 2009-4-22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deqiang Zhang or Bailian Li.

Additional information

Communicated by P. Westhoff.

Nucleotide sequence data reported are available in the GenBank database under the accession numbers GQ988327 (PtACT1 cDNA)-GQ988367.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Du, Q., Xu, B. et al. The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genomics 284, 105–119 (2010). https://doi.org/10.1007/s00438-010-0552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0552-5

Keywords

Navigation