Skip to main content

Advertisement

Log in

Mitochondrial DNA diversity of mud crab Scylla olivacea (Portunidae) in Peninsular Malaysia: a preliminary assessment

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A primary factor in population management and wildlife conservation is the delineation of population units derived from descriptions of population genetic structure. Yet, predicting factors that influence the patterns of gene flow in a population particularly at landscape scales remains a major challenge in evolutionary biology. Here we report a population genetic study of the mud crab Scylla olivacea examined based on a 542 bp segment of the mitochondrial DNA cytochrome c oxidase I gene among 91 individuals from six localities in the west and east coast of Peninsular Malaysia. In total 55 unique haplotypes were distinguished with 45 private haplotypes and a single common haplotype shared among all populations studied. The other ten haplotypes were shared among various populations. The sharing of this haplotype reflects the connection of the mangrove areas between east and west coast of Peninsular Malaysia. High haplotype diversity (h = 0.968 ± 0.021; mean ± SD) and low nucleotide diversity (π = 0.120 ± 0.015; mean ± SD) were displayed, which may be indicative of genetic bottleneck events. No significant phylogenetic lineages were recognized using neighbour-joining and maximum parsimony methods. Hierarchical AMOVA analysis indicated that 99.33 % of the genetic variation was contained within populations and 0.67 % occurred among populations, suggesting no geographical patterning among populations studied, supported by F st test. Mismatch distribution analysis showed that the observed distribution of the pairwise mutation differences among haplotypes was multimodal, which is not concordant with a sudden range expansion scenario. However, neutrality tests showed non-significant negative values suggesting that the populations studied may have experienced past population growth, but the expansion may have been restricted to separate local areas that resulted in the non-significant negative Fu’s Fs and Tajima’s D value. Overall, this present preliminary study was able to be a reference on the phylogenetic relationships and assessment of genetic structure of Scylla sp. in Malaysia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neigel JE (1997) Population genetics and demography of marine species. In: Ormond RFG, Gage JD, Angel MV (eds) Marine biodiversity, patterns and processes. Cambridge University Press, Cambridge, pp 274–291

    Chapter  Google Scholar 

  2. McCusker MR, Bentzen P (2010) Positive relationship between genetic diversity and abundance in fishes. Mol Ecol 19:4852–4862

    Article  PubMed  Google Scholar 

  3. Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater and anadromous fish. J Fish Biol 44:213–232

    Article  Google Scholar 

  4. Zardoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Patarnello T (2004) DiVerential population structuring of two closely related Wsh species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus) in the Mediterranean Sea. Mol Ecol 13:1785–1798

    Article  PubMed  CAS  Google Scholar 

  5. McQuinn IH (1997) Metapopulations and the Atlantic herring. Rev Fish Biol Fish 7:297–329

    Article  Google Scholar 

  6. Nielsen SE, Herrero S, Boyce MS, Mace RD, Benn B, Gibeau ML, Jevons S (2004) Modelling the spatial distribution of human-caused grizzly bear mortalities in the Central Rockies ecosystem of Canada. Biol Conserv 120:101–113

    Article  Google Scholar 

  7. Olsen SM, Hansen B, Quadfasel D, Østerhus S (2008) Observed and modeled stability of overflow across the Greenland–Scotland ridge. Nature 455:519–523

    Article  PubMed  CAS  Google Scholar 

  8. Wirth T, Bernatchez L (2001) Genetic evidence against panmixia in the European eel. Nature 409:1037–1040

    Article  PubMed  CAS  Google Scholar 

  9. Knutsen H, Jorde PE, André C, Stenseth NC (2003) Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Mol Ecol 12:385–394

    Article  PubMed  CAS  Google Scholar 

  10. Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  11. Addison JA, Ort BS, Mesa KA, Pogson GH (2008) Range-wide genetic homogeneity in the California sea mussel (Mytilus californianus): a comparison of allozymes, nuclear DNA markers, and mitochondrial DNA sequences. Mol Ecol 17:4222–4232

    Article  PubMed  CAS  Google Scholar 

  12. Naim DM, Telfer S, Tatman S, Bird S, Kemp SJ, Hughes R, Watts PC (2012) Patterns of genetic divergence among populations of the common dormouse, Muscardinus avellanarius in the UK. Mol Biol Rep 39:1205–1215

    Article  PubMed  CAS  Google Scholar 

  13. Jirapunpipat K, Yokota M, Watanabe S (2009) The benefits of species-based management of sympatric mud crabs migrating to a common fishing ground. ICES J Mar Sci 66:470–477

    Article  Google Scholar 

  14. Fuseya R, Watanabe S (1996) Genetic variability in the mud crab genus Scylla (Brachyura: Portunidae). Fish Sci 62(5):705–709

    CAS  Google Scholar 

  15. Klinbunga S, Boonyapakdee A, Pratoomchat B (2000) Genetic diversity and species-diagnostic markers of mud crabs (Genus Scylla) in Eastern Thailand determined by RAPD analysis. Mar Biotechnol 2:180–187

    PubMed  CAS  Google Scholar 

  16. Knuckey IA (1996) Maturity in male mud crabs, Scylla serrata and the use of mating scars as a functional indicator. J Crustac Biol 16(3):487–495

    Article  Google Scholar 

  17. Keenan C (2004) World status of Portunid aquaculture and fisheries. In: Allan G, Fielder D (eds) Mud crab aquaculture in Australia and Southeast Asia. Proceedings of the ACIAR crab aquaculture scoping study and workshop 28–29 April 2003, Joondooburri Conference Centre, Bribie Island. ACIAR working paper No. 54, Canberra Australia, pp 42–44

  18. IUCN (2011) European Mammal Assessment. Available via http://ec.europa.eu/environment/nature/conservation/species/ema/. Assessed 14 June 2012

  19. Spalding M, Blasco F, Field C (1997) World mangrove atlas. The International Society Mangrove Ecosystems, Okinawa

    Google Scholar 

  20. Xu JC, Grumbine RE, Shrestha A, Eriksson M, Yang XF, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity and livelihoods. Conserv Biol 23(3):520–530

    Article  PubMed  CAS  Google Scholar 

  21. Francis J, Bryceson I (2001) Tanzanian coastal and marine resources: some examples illustrating questions of sustainable use. In: Ahmed J et al (eds) Lessons learned: case studies in sustainable use. IUCN, Gland, pp 74–100

    Google Scholar 

  22. Mahika C, Mhitu H, Kuboja B (2005) Rapid assessment of abundance and biomass of the mangrove crab (Scylla serrata) and its mariculture development on the Tanga coast. Prepared for ACDI/VOCA Tanzania’s Smallholder Empowerment & Economic Growth through Agribusiness & Association Development (SEEGAAD) Project, Tanga, Tanzania

  23. Fielder D, Allan G (2004) Executive summary and recommendations. In: Allan G, Fielder D (eds) Mud crab aquaculture in Australia and Southeast Asia. Proceedings of the ACIAR crab aquaculture scoping study and workshop 28–29 April 2003, Joondooburri Conference Centre, Bribie Island. ACIAR working paper No. 54, Canberra Australia, pp 7–9

  24. Gopurenko D, Hughes JM, Ma J (2002) Identification of polymorphic microsatellite loci in the mud crab Scylla serrata (Brachyura: Portunidae). Mol Ecol Notes 2(4):481–483

    Article  CAS  Google Scholar 

  25. Ewel KC (2008) Mangrove crab (Scylla serrata) populations may sometimes be best managed locally. J Sea Res 59:114–120

    Article  Google Scholar 

  26. Ewel KC, Rowe S, McNaughton B, Bonine KM (2009) Characteristics of Scylla spp. (Decapoda: Portunidae) and their mangrove forest habitat in Ngaremeduu Bay, Republic of Palau. Pacific Sci 63(1):15–26

    Article  Google Scholar 

  27. DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Genet 5:702–712

    Article  PubMed  CAS  Google Scholar 

  28. Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193

    Article  Google Scholar 

  29. Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327

    Article  PubMed  CAS  Google Scholar 

  30. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  31. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  32. Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  PubMed  CAS  Google Scholar 

  33. Frankham R (2010) Where are we in conservation genetics and where do we need to go? Conserv Genet 11:661–663

    Article  Google Scholar 

  34. Mitra A, Yadav BR, Ganai NA et al (1999) Molecular markers and their applications in livestock improvement. Curr Sci 77:1045–1053

    CAS  Google Scholar 

  35. Sunnucks P (2000) Efficient genetic markers for population biology. TREE 15(5):199–203

    PubMed  Google Scholar 

  36. Domingo-Roura X, Marmi J, López-Giráldez JF, Garcia-Franquesa E (2001) New molecular challenges in animal conservation. Anim Biod Conserv 24(1):19–29

    Google Scholar 

  37. Schlötterer C (2004) The evolution of molecular markers: just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  Google Scholar 

  38. Galtier N, Nabholz B, Glémin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    Article  PubMed  CAS  Google Scholar 

  39. Keenan CP, Davie PJF, Mann DL (1998) A revision of the genus Scylla De Haan, 1833 (Crustacea: Decapoda: Brachyura: Portunidae). Raffles Bull Zool 46:217–245

    Google Scholar 

  40. Gopurenko D, Hughes JM, Keenan CP (1999) Mitochondrial DNA evidence for rapid colonization of the Indo-West Pacific by the mud crab Scylla serrata. Mar Biol 134:227–233

    Article  Google Scholar 

  41. Gopurenko D, Hughes JM (2002) Regional patterns of genetic structure among Australian populations of the mud crab Scylla serrata (Crustecea: Decapoda): evidence from mitochondrial DNA. Mar Freshw Res 53:849–857

    Article  CAS  Google Scholar 

  42. Roehrdanz RL (1993) An improved primer for PCR amplification of mitochondrial amplification in a variety of insect species. Insect Mol Biol 2:89–91

    Article  PubMed  CAS  Google Scholar 

  43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  44. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  45. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  46. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256

    Article  PubMed  CAS  Google Scholar 

  47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  48. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  49. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  50. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  51. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to Human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  52. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  53. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  54. Fu XY (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  55. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  56. Cheng Y, Jin X, Shi G, Wang R, Xu T (2011) Genetic diversity and population structure of miiuy croaker populations in East China Sea revealed by the mitochondrial DNA control region sequence. Biochem Syst Ecol xxx:1–7

    Google Scholar 

  57. Artico LO, Bianchini A, Grubel KS, Monteiro DS, Estima SC, Oliveira LRD, Bonatto SL, Marins LF (2010) Mitochondrial control region haplotypes of the South America sea lion Otaria flavescens (Shaw, 1800). Braz J Med Biol Res 43(9):816–820

    Article  PubMed  CAS  Google Scholar 

  58. Jamsari AFJ, Muchlisin ZA, Musri M, Siti Azizah MN (2010) Remarkably low genetic variation but high population differentiation in the climbing perch, Anabas testudineus (Anabantidae), based on the mtDNA control region. Gen Mol Res 9(3):1836–1843

    Article  CAS  Google Scholar 

  59. Horne JB, Herwerden LV, Choat JH, Robertson DR (2008) High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylo Evol 49:629–638

    Article  Google Scholar 

  60. Hill BJ (1994) Offshore spawning by the portunid crab Scylla serrata (Crustacea: Decapoda). Mar Biol 120:379–384

    Article  Google Scholar 

  61. Guo E, Liu Y, Cui Z (2011) Genetic variation and population structure of swimming crab (Portunus trituberculatus) inferred from mitochondrial control region. Mol Biol Rep. doi:10.1007/s11033-011-0882-3

  62. Rahim MHA, Ismail P, Alias R, Muhammad N, Jais AMM (2012) PCR-RFLP analysis of mitochondrial DNA cytochrome b gene among Haruan (Channa striatus) in Malaysia. Genetics 494:1–10

    Google Scholar 

  63. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  64. Maltagliati F, Giuseppe GD, Barbieri M, Castelli A, Dini F (2010) Phylogeography and genetic structure of the edible sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) inferred from the mitochondrial cytochrome b gene. Biol J Linn Soc 100:910–923

    Article  Google Scholar 

  65. Lessios HA, Lockhart S, Collin R, Sotil G, Sanchez-Jerez P, Zigler KS, Perez AF, Garrido MJ, Geyer LB, Bernard G, Vacquier VD, Haroun R, Kessing BD (2011) Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Mol Ecol 21:130–144

    Article  PubMed  Google Scholar 

  66. Liao PC, Kuo DC, Lin CC, Ho KC, Lin TP, Hwang SY (2010) Historical spatial range expansion and a very recent bottleneck of Cinnamomum kanehirae Hay. (Lauraceae) in Taiwan inferred from nuclear genes. BMC Evol Biol 10:124

    Article  PubMed  Google Scholar 

  67. Bucklin A, Wiebe PH (1998) Low mitochondrial diversity and small effective population sizes of the Copepods Calanus finmarchicus and Nannocalanus minor: possible impact of climatic variation during recent glaciations. The Am Genet Assoc 89:383–392

    CAS  Google Scholar 

  68. Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Cuzin-Roudy J, Buchholz F, Patarnello T (2000) Genetic differentiation in a pelagic crustacean (Meganyctiphanes norvegica, Euphausiacea) from the North East Atlantic and the Mediterranean Sea. Mar Biol 136:191–199

    Article  Google Scholar 

  69. Stamatis C, Triantafylllidis A, Moutou A, Mamuris Z (2004) Mitochondrial DNA variation in Northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Mol Ecol 13:1377–1390

    Article  PubMed  CAS  Google Scholar 

  70. Inoue N, Watanabe H, Kojima S, Sekiguchi H (2007) Population structure of Japanese spiny lobster Panulirus japonicus inferred by nucleotide sequence analysis of mitochondrial COI gene. Fish Sci 73(3):550–556

    Article  CAS  Google Scholar 

  71. Maggio T, Brutto SL, Garoia F, Tinti F, Arculeo M (2009) Microsatellite analysis of red mullet Mullus barbatus (Perciformes, Mullidae) reveals the isolation of the Adriatic Basin in the Mediterranean Sea. ICES J Mar Sci 66(9):1883–1891

    Article  Google Scholar 

  72. Ferreri M, Gao J, Wang Z, Chen L, Su J, Han B (2011) Chinese Holstein cattle shows a genetic contribution from native Asian cattle breeds: a study of shared haplotypes and demographic history. Asian-Aust J Anim Sci 24(8):1048–1052

    Article  Google Scholar 

  73. Slatkin M, Muirhead CA (1999) Overdominant Alleles in a population of variable size. Genetics 152:775–781

    PubMed  CAS  Google Scholar 

  74. Stepien CA, Hubers AN, Skidmore JL (1999) Diagnostic genetic markers and evolutionary relationships among invasive dreissenoid and corbiculoid bivalves in North America: phylogenetic signal from mitochondrial 16S rDNA. Mol Phyl Evol 13:31–49

    Article  CAS  Google Scholar 

  75. Hauser MT, Harr B, Schlötterer C (2001) Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis of the candidate gene GLABROUS1. Mol Biol Evol 18(9):1754–1763

    Article  PubMed  CAS  Google Scholar 

  76. Takano M, Barinova A, Sugaya T, Obata Y, Watanabe T, Ikeda M, Taniguchi N (2005) Isolation and characterization of microsatellite DNA markers from mangrove crab, Scylla paramamosain. Mol Ecol Notes 5:794–795

    Article  CAS  Google Scholar 

  77. Cui H, Ma H, Ma L, Ma C, Ma Q (2011) Development of eighteen polymorphic microsatellite markers in Scylla paramamosain by 5′ anchored PCR technique. Mol Biol Rep 38:4999–5002

    Article  PubMed  CAS  Google Scholar 

  78. Ma H, Ma C, Ma L (2011) Population genetic diversity of mud crab (Scylla paramamosain) in Hainan Island of China based on mitochondrial DNA. Biochem Syst Ecol (in press)

  79. Li Z, Li S, Wang G (2004) Biochemical genetic analysis of allozymes of mud crab, Scylla serrata. Chin J Eco-Agri 12:61–64 (in Chinese with English abstract)

    Google Scholar 

  80. Conroy CJ, Cook JA (2000) Phylogeography of a post-glacial colonizer: Microtus longicaudus (Rodentia: Muridae). Mol Ecol 9:165–175

    Article  PubMed  CAS  Google Scholar 

  81. Richards KJ (1998) Interleaving at the equator: Its parameterization and effect on the large scale dynamics. In: Chassignet EP, Verron J (eds) Ocean modeling and parameterization. Kluwer Academic Publishers, Dordrecht, pp 235–251

    Chapter  Google Scholar 

  82. Beheregaray LB, Sunnucks P (2001) Fine-scale genetic structure, estuarine colonization and incipient speciation in the marine silverside fish Odontesthes argentinensis. Mol Ecol 10:2849–2866

    Article  PubMed  CAS  Google Scholar 

  83. Ong KS (1964) The early developmental stages Scylla serrata reared in the laboratory. IPFC Proc I:135–146

    Google Scholar 

  84. Brick RW (1974) Effects of water quality, antibiotics, phytoplankton and food on survival and development of larvae of Scylla serrata (Crustacea: Portunidae). Aquaculture 3:231–244

    Article  Google Scholar 

  85. Fratini S, Vannini M (2002) Genetic differentiation in the mud crab Scylla serrata (Decapoda: Portunidae) within the Indian Ocean. J Exp Mar Biol Ecol 272:103–116

    Article  CAS  Google Scholar 

  86. He L, Zhang A, Weese D, Zhu C, Jiang C, Qiao Z (2010) Late Pleistocene population expansion of Scylla paramamosain along the coast of China: a population dynamic response to the Last Interglacial sea level highstand. J Exp Mar Biol Ecol 385:20–28

    Article  Google Scholar 

  87. Lourie SA, Vincent ACJ (2004) Using biogeography to help set priorities in marine conservation. Conserv Biol 18(4):1004–1020

    Article  Google Scholar 

  88. Gaither MR, Bowen BW, Bordenave TR, Rocha LA, Newman SJ, Gomez JA, Herwerden LV, Craig MT (2011) Phylogeography of the reef fish Cephalopholis argus (Epinephelidae) indicates Pleistocene isolation across the indo-pacific barrier with contemporary overlap in the coral triangle. BMC Evol Biol 11:189

    Article  PubMed  Google Scholar 

  89. Naim DM, Telfer S, Sanderson S, Kemp SJ, Watts PC (2011) Prevalence of multiple mating by female common dormice, Muscardinus avellanarius. Conserv Genet 12:971–979

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Fisheries Research Institute of Johor for their assistance in sample collection, members of the 308 Laboratory, Universiti Sains Malaysia for their full support throughout the project and all of the people involved in sample collections and laboratory work. We also want to express our gratitude to Assoc. Prof. Salasiah Che Lah (SoLLaT, USM) for professional English language editing. This project was funded by Universiti Sains Malaysia through Short Term Research Grant 304/PBIOLOGI/6311003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darlina Md. Naim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosly, H.AA.M., Nor, S.A.M., Yahya, K. et al. Mitochondrial DNA diversity of mud crab Scylla olivacea (Portunidae) in Peninsular Malaysia: a preliminary assessment. Mol Biol Rep 40, 6407–6418 (2013). https://doi.org/10.1007/s11033-013-2755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2755-4

Keywords

Navigation