Skip to main content

Advertisement

Log in

Prevalence of multiple mating by female common dormice, Muscardinus avellanarius

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Mating behaviour is an important component of species’ life histories. Knowledge of natural patterns of mating can lead also to more effective management strategies for populations of conservation concern. Despite a high conservation profile many aspects of the biology of the common dormouse (Muscardinus avellanarius) remain unknown, potentially limiting present conservation efforts. We determine the mating behaviour of M. avellanarius at two woodland sites in the UK: (1) Bontuchel (a natural population in Wales) and (2) Wych (a population in England that was established by reintroducing captive-bred animals) by genotyping mothers and litters at a panel of 10 microsatellite loci. Adult female body weight positively correlates with litter size and no apparent reproductive skew was evident. We found that multiple mating by female dormice is prevalent at both sites, with litters containing three or more offspring sired by multiple fathers; moreover, multiple mating is adopted by released animals even after a period of captive breeding where females are mated singly or as a breeding pair. We also present evidence for low proportion of fathers identified in our samples that probably related to unsampled individuals and/or larger than anticipated population sizes. This first report of mating behaviour in M. avellanarius highlights the role of genetic studies to uncover species’ reproductive behaviours and include these data for conservation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banks SC, Lindenmayers D, Ward J, Taylor AC (2005) The effects of habitat fragmentation via forestry plantation establishment on spatial genotypic structure in the small marsupial carnivore, Anthecinus agilis. Mol Ecol 14:1667–1680

    Article  PubMed  CAS  Google Scholar 

  • Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Viano C, Currado I (2001) Population dynamics, breeding patterns and spatial use of the garden dormouse Eliomys quercinus in an Alpine habitat. J Zool Lond 253:513–521

    Article  Google Scholar 

  • Borkowska A (2010) Seasonal variation of reproductive success under female philopatry and male-biased dispersal in a common vole population. Behav Process 86:39–45

    Article  Google Scholar 

  • Borkowska A, Borowski Z, Krysiuk K (2010) Multiple paternity in free-living root voles (Microtus oeconomus). Behav Process 82:211–213

    Article  Google Scholar 

  • Bright PW, Morris PA, Mitchell JT (2006) The dormouse conservation handbook. English Nature, Great Britain

    Google Scholar 

  • Büchner S, Tubbe SM, Triese SD (2003) Breeding and biological data for the common dormouse (Muscardinus avellanarius) in Eastern Saxony (Germany). Acta Zool Acad Sci Hung 49:19–26

    Google Scholar 

  • Clutton-Brock TH, McAuliffe K (2009) Female mate choice in mammals. Quat Rev Biol 84:3–27

    Article  Google Scholar 

  • Clutton-Brock TH, Vincent ACJ (1991) Sexual selection and the potential reproductive rates of males and females. Nature 351:58–60

    Article  PubMed  CAS  Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trend Ecol Evol 14:405–410

    Article  Google Scholar 

  • Crawford JC, Liu ZW, Nelson TA, Nielsen CK, Blooniquist CK (2008) Microsatellite analysis of mating and kinship in beavers (Castor Canadensis). J Mammal 89:575–581

    Article  Google Scholar 

  • Dean MD, Ardlie KG, Nachman MW (2006) The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol Ecol 15:4141–4151

    Article  PubMed  CAS  Google Scholar 

  • DeWoody JA, Fletcher DE, Wilkins SD, Nelson WS, Avise JC (2000) Genetic monogamy and biparental care in an externally fertilizing fish, the largemouth bass (Micropterus salmoides). Proc R Soc Lond B267:2431–2437

    Article  Google Scholar 

  • Feldheim KA, Gruber SH, Ashley MV (2002) Breeding biology of lemon sharks at a tropical nursery lagoon. Proc R Soc Lond B269:1655–1662

    Article  Google Scholar 

  • Firman RC, Simmons LW (2008) The frequency of multiple paternity predicts variation in testes size among island populations of house mice. J Evol Biol 21:1524–1533

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2001) FSTAT; a program to estimate and test gene diversities and fixation indices, version 2.9.3.2. Available via http://www.unil.ch/izea/softwares/fstat.html. Assessed 30 June 2009

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hauber ME, Lacey EA (2005) Bateman’s principle in cooperatively breeding vertebrates: the effects of non-breeding alloparents on variability of female and male reproductive success. Integr Comp Biol 45:903–914

    Article  PubMed  Google Scholar 

  • Hohoff C, Franzen K, Sachser N (2003) Female choice in a promiscuous wild guinea pig, the yellow-toothed cavy (Galea musteloides). Behav Ecol Sociobiol 53:341–349

    Google Scholar 

  • Holand Ø, Weladji RB, Gjøstein H, Kumpula J, Smith ME, Nieminen M, Røed KH (2004) Reproductive effort in relation to maternal social rank in reindeer Rangifer tarandus. Behav Ecol Sociobiol 57:69–76

    Article  Google Scholar 

  • Holt M, Vangen O, Farstad W (2004) Components of litter size in mice after 110 generations of selection. Reproduction 127:587–592

    Article  PubMed  CAS  Google Scholar 

  • Hoogland JL (1995) The black-tailed prairie dog: social life of a burrowing mammal. University of Chicago Press, Chicago

    Google Scholar 

  • IUCN (2009) European Mammal Assessment. Available via http://ec.europa.eu/environment/nature/conservation/species/ema/. Assessed 11 May 2009

  • Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev 75:21–64

    Article  PubMed  CAS  Google Scholar 

  • Jonsson P, Agrell J, Koskela E, Mappes T (2002) Effects of litter size on pup defence and weaning success of neighbouring bank voles females. Can J Zool 80:1–5

    Article  Google Scholar 

  • Jule KR, Leaver LA, Lea SEG (2008) The effects of captive experience on reintroduction survival in carnivores: a review and analysis. Biol Conserv 141:355–363

    Article  Google Scholar 

  • Juŝkaitis R (2003) Abundance dynamics and reproduction success in the common dormouse, Muscardinus avellanarius, populations in Lithuania. Folia Zool 52:239–248

    Google Scholar 

  • Keane B (1990) Dispersal and inbreeding avoidance in the white-footed mouse, Peromyscus leucopus. Anim Behav 40:143–152

    Article  Google Scholar 

  • Keane B, Waser PM, Creel SR, Creel NM, Elliott LF, Minchella DJ (1994) Subordinate reproduction in dwarf mongooses. Anim Behav 47:65–75

    Article  Google Scholar 

  • Keil A, Sacher N (1998) Reproductive benefits from female promiscuous mating in a small mammal. Ethol 104:897–903

    Article  Google Scholar 

  • Kennis J, Sluydts V, Leirs H, Van Hooft P (2008) Polyandry and polygyny in an African rodent pest species, Mastomys natalensis. Mammal 72:150–160

    Article  Google Scholar 

  • Kinahan AA, Pillay N (2008) Dominance status influences female reproductive strategy in a territorial African rodent Rhabdomys pumiio. Behav Ecol Sociobiol 62:579–587

    Article  Google Scholar 

  • Lane JE, Boutin S, Gunn MR, Slate J, Coltman DW (2008) Female multiple mating and paternity in free-ranging North American red squirrels. Anim Behav 75:1927–1937

    Article  Google Scholar 

  • Laurent L, Perrin N (2003) Inbreeding avoidance through kin recognition: choosy females boost male dispersal. Am Nat 162:638–652

    Article  Google Scholar 

  • Lee PL, Hays GC (2004) Polyandry in a marine turtle: females make the best of a bad job. Proc Nat Acad Sci USA 101:6530–6535

    Article  PubMed  CAS  Google Scholar 

  • Macdonald DW, Tattersall F (2003) The state of Britain’s mammals. Mammal Trust UK/People’s Trust for Endangered Species, Great Britain

    Google Scholar 

  • Marin G, Pilastro A (1994) Communally breeding dormice Glis glis are close kin. Anim Behav 47:1485–1487

    Article  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  PubMed  CAS  Google Scholar 

  • Mateo JM (2003) Kin recognition in ground squirrels and other rodents. J Mammal 84:1163–1181

    Article  Google Scholar 

  • Matocq MD, Lacey EA (2004) Philopatry, kin clusters, and genetic relatedness in a population of woodrats (Neotoma macrotis). Behav Ecol 15:647–653

    Article  Google Scholar 

  • Md. Naim D, Kemp SJ, Telfer S, Watts PC (2009) Isolation and characterization of 10 microsatellite loci in the common dormouse Muscardinus avellanarius. Mol Ecol Res 9:1010–1012

    Article  CAS  Google Scholar 

  • Md. Naim D, Telfer S, Tatman S, Bird S, Kemp SJ, Watts PC (submitted) Reintroduced common dormice, Muscardinus avellanarius, retain their natural dispersal behaviour

  • Moore JA, Nelson NJ, Keall SN, Daugherty CH (2007) Implications of social dominance and multiple paternity for the genetic diversity of a captive-bred reptile population (tuatara). Conserv Genet 9:1243–1251

    Article  Google Scholar 

  • Moran S, Turner PD, O’Reilly C (2009) Multiple paternity in the European hedgehog. J Zool 278:349–353

    Article  Google Scholar 

  • Morris PA (2004) Dormice. British Natural History Series. Whittet Books Ltd, Suffolk

    Google Scholar 

  • Nevo E, Amir E (1964) Variation in reproduction and hibernation patterns of the forest dormouse. J Mammal 45:69–87

    Article  Google Scholar 

  • Nievergelt CM, Digby LJ, Ramakrishnan U, Woodruff DS (2000) Genetic analysis of group composition and breeding system in a wild common marmoset (Callithrix jacchus) population. Int J Primatol 2:11–20

    Google Scholar 

  • Pilastro A (1992) Communal nesting between breeding females in a free-living population of fat dormouse Glis glis. Ital J Zool 59:63–68

    Article  Google Scholar 

  • Pilastro A, Tavecchia G, Marin G (2003) Long living and reproduction skipping in the fat dormouse. Ecology 84:1784–1792

    Article  Google Scholar 

  • Pillay N (2002) Father-daughter recognition and inbreeding avoidance in the striped mouse, Rhabdomys pumilio. Mamm Biol 67:212–218

    Article  Google Scholar 

  • Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP, version 1.2. Population genetics software for exact tests and ecumenicisms. J Hered 86:248–249

    Google Scholar 

  • Reeve HK, Westneat DF, Noon WA, Sherman PW, Aquadro CF (1990) DNA fingerprinting reveals high-levels of inbreeding in colonies of the eusocial naked mole-rat. Proc Ant Acad Sci USA 87:2496–2500

    Article  CAS  Google Scholar 

  • Schilling P, North W, Bogart R (1968) The effect of sire on litter size in mice. J Hered 59:351–352

    PubMed  CAS  Google Scholar 

  • Schmoll T, Dietrich V, Winkel W, Epplen JT, Lubjuhn T (2003) Long-term fitness consequences of female extra-pair matings in a socially monogamous passerine. Proc R Soc Lond B 270:259–264

    Article  Google Scholar 

  • Schulte-Hostedde AI, Millar JS, Gibbs HL (2002) Female-biased sexual size dimorphism in the yellow-pine chipmunk (Tamias amoenus): sex specific patterns of annual reproductive success and survival. Evolution 56:2519–2529

    PubMed  Google Scholar 

  • Schulte-Hostedde AI, Millar JS, Gibbs HL (2004) Sexual selection and mating patterns in a mammal with female-biased sexual dimorphism. Behav Ecol 15:351–356

    Article  Google Scholar 

  • Simmons LW (2005) The evolution of polyandry: sperm competition, sperm selection, and offspring viability. Ann Rev Ecol Syst 36:125–145

    Article  Google Scholar 

  • Solomon NG, Keane B (2007) Reproductive strategies in female rodents. In: Wolff JO, Sherman PW (eds) Rodent societies: an ecological and evolutionary perspective, 1st edn. University of Chicago Press, Chicago and London, pp 42–57

    Google Scholar 

  • Stockley P (2003) Female multiple mating behaviour, early reproductive failure and litter size variation in mammals. Proc R Soc Lond B 270:271–278

    Article  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  • Wang J, Santure AW (2009) Parentage and sibship inference from multi-locus genotype data under polygamy. Genetics 181:1579–1594

    Article  PubMed  CAS  Google Scholar 

  • Waser PM, DeWoody JA (2006) Multiple paternity in philoptric rodent: the interation of competition and choice. Behav Ecol 17:971–978

    Article  Google Scholar 

  • Wauters L, Dhondt AA (1989) Body weight, longevity and reproductive success in red Squirrels (Sciurus vulgaris). Oikos 58:637–651

    Google Scholar 

  • Wolff JO, Macdonald DW (2004) Promiscous females protect their offspring. Trends Ecol Evol 19:27–134

    Article  Google Scholar 

  • Yasui Y (1998) The “genetic benefits” of female multiple mating reconsidered. Trends Ecol Evol 13:246–250

    Article  PubMed  CAS  Google Scholar 

  • Zeh JA, Zeh DW (2001) Reproductive mode and the genetic benefits of polyandry. Anim Behav 61:1051–1063

    Article  Google Scholar 

Download references

Acknowledgments

We thank all of the members of the Northwest Dormouse Partnership, particularly Sarah Bird, Scott Wilson, Rhian Hughes, Sue Tatman, Iolo Lloyd and the Forestry Commission, as well as all of the volunteers that have helped during survey work. This work was funded by Malaysian Government and Universiti Sains Malaysia for Academic Staff Training Scheme (ASTS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darlina Md. Naim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 226 kb)

Supplementary material 2 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naim, D.M., Telfer, S., Sanderson, S. et al. Prevalence of multiple mating by female common dormice, Muscardinus avellanarius . Conserv Genet 12, 971–979 (2011). https://doi.org/10.1007/s10592-011-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0200-6

Keywords

Navigation