Skip to main content
Log in

Gene pyramiding of ZmGLK36 and ZmGDIα-hel for rough dwarf disease resistance in maize

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Maize rough dwarf disease (MRDD) caused by pathogenic viruses in the genus Fijivirus in the family Reoviridae is one of the most destructive diseases in maize. The pyramiding of effective resistance genes into maize varieties is a potential approach to reduce the damage resulting from the disease. Two major quantitative trait loci (QTLs) (qMrdd2 and qMrdd8) have been previously identified. The resistance genes ZmGLK36 and ZmGDIα-hel have also been cloned with the functional markers Indel-26 and IDP25K, respectively. In this study, ZmGLK36 and ZmGDIα-hel were introgressed to improve MRDD resistance of maize lines (Zheng58, Chang7-2, B73, Mo17, and their derived hybrids Zhengdan958 and B73 × Mo17) via marker-assisted selection (MAS). The converted lines and their derived hybrids, carrying one or two genes, were evaluated for MRDD resistance using artificial inoculation methods. The double-gene pyramiding lines and their derived hybrids exhibited increased resistance to MRDD compared to the monogenic lines and the respective hybrids. The genetic backgrounds of the converted lines were highly similar (90.85–98.58%) to the recurrent parents. In addition, agronomic trait evaluation demonstrated that pyramiding lines with one or two genes and their derived hybrids were not significantly different from the recurrent parents and their hybrids under nonpathogenic stress, including period traits (tasseling, pollen shedding, and silking), yield traits (ear length, grain weight per ear and 100-kernel weight) and quality traits (protein and starch content). There were differences in plant architecture traits between the improved lines and their hybrids. This study illustrated the successful development of gene pyramiding for improving MRDD resistance by advancing the breeding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are enclosed either in the main text or as supplementary materials. Other data can be requested from the corresponding author.

References

  • Chen YC, Hu CC, Chang FY et al (2021) Marker-assisted development and evaluation of monogenic lines of rice cv. Kaohsiung 145 carrying blast resistance genes. Plant Dis 105(12):3858–3868

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang B, Ding J et al (2022) Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nat Commun 13(1):4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Gao G, Lou G et al (2023) Improvement of rice blast resistance in TGMS line HD9802S through optimized anther culture and molecular marker-assisted selection. Int J Mol Sci 24(19):14446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das G, Patra JK, Baek KH (2017) Insight into MAS: A molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng C, Leonard A, Cahill J et al (2022) The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Mol Plant 15(5):904–912

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Wang Z, Wang P et al (2021) Heterosis derived from nonadditive effects of the BnFLC homologs coordinates early flowering and high yield in rapeseed (Brassica napus L.). Front Plant Sci 12:798371

    Article  PubMed  Google Scholar 

  • Gautam T, Dhillon GS, Saripalli G et al (2020) Marker-assisted pyramiding of genes/QTL for grain quality and rust resistance in wheat (Triticum aestivum L.). Mol Breed 40(5):49

    Article  CAS  Google Scholar 

  • Han XH, Chen TM, Yue RQ et al (2019) A rice black-streaked dwarf virus replication curve model to evaluate maize rough dwarf disease resistance. Plant Dis 103(5):868–873

    Article  CAS  Google Scholar 

  • Han JN, Wang MJ, Zhao XC et al (2020) Establishment and Optimization of a Near-Infrared Model of Maize Starch Content. Crop Sci 28(6):81–87 (in Chinese)

    Google Scholar 

  • Han G, Yan H, Gu T et al (2023) Identification of a wheat powdery mildew dominant resistance gene in the Pm5 Locus for high-throughput marker-assisted selection. Plant Dis 107(2):450–456

    Article  CAS  PubMed  Google Scholar 

  • He L, Zou L, Huang Q et al (2020) Development of InDel markers of Bph3 and pyramiding of four brown planthopper resistance genes into an elite rice variety. Mol Breed 40(10):95

    Article  CAS  Google Scholar 

  • Hu W, Fu L, Gao D et al (2023) Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in the high-quality soft wheat cultivar Yangmai 15. J of Integr Agr 22(2):360–370

    Article  CAS  Google Scholar 

  • Jena KK, Kim SM (2010) Current status of brown planthopper (BPH) resistance and genetics. Rice 3(2–3):161–171

    Article  Google Scholar 

  • Jiang H, Feng Y, Bao L et al (2012) Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed 30(4):1679–1688

    Article  CAS  Google Scholar 

  • Kumari M, Rai AK, Devanna BN et al (2017) Co-transformation mediated stacking of blast resistance genes Pi54 and Pi54rh in rice provides broad spectrum resistance against Magnaportheoryzae. Plant Cell Rep 36(11):1747–1755

    Article  CAS  PubMed  Google Scholar 

  • Li R, Song W, Wang B et al (2018) Identification of a locus conferring dominant resistance to maize rough dwarf disease in maize. Sci Rep 8(1):3248

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Pan X, Li H (2022a) Pyramiding of gn1a, gs3, and ipa1 exhibits complementary and additive effects on rice yield. Int J Mol Sci 23(20):12478

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Lin F, Li C et al (2022b) Golden 2-like transcription factor contributes to the major QTL against rice black-streaked dwarf virus disease. Theor Appl Genet 135(12):4233–4243

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Hua J, Liu C et al (2016) Fine mapping of a quantitative trait locus conferring resistance to maize rough dwarf disease. Theor Appl Genet 129(12):2333–2342

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Deng S, Liu B et al (2020) A helitron-induced RabGDIα variant causes quantitative recessive resistance to maize rough dwarf disease. Nat Commun 11(1):495

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Kong M, Yang F et al (2022) Targeted generation of null mutants in ZmGDIα confers resistance against maize rough dwarf disease without agronomic penalty. Plant Biotechnol J 20(5):803–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan J, Wang F, Li Y et al (2012) Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize (Zea mays L.). Theor Appl Genet 125(4):781–791

    Article  CAS  PubMed  Google Scholar 

  • Mi J, Yang D, Chen Y et al (2018) Accelerated molecular breeding of a novel P/TGMS line with broad-spectrum resistance to rice blast and bacterial blight in two-line hybrid rice. Rice 11(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Miah G, Rafii MY, Ismail MR et al (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14(11):22499–22528

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng P, Jiang H, Luo L et al (2023) Pyramiding of multiple genes to improve rice blast resistance of photo-thermo sensitive male sterile line, without yield penalty in hybrid rice production. Plants-Basel 12(6):1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Guo J, Jing S et al (2010) High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds. Theor Appl Genet 121(8):1601–1611

    Article  PubMed  Google Scholar 

  • Rathnayake AS, Allué J, Llugany M et al (2014) High quality DNA obtained from a single seed of Vitis vinifera L. using rapid DNA extraction method. Am J Plant Sci 05(13):2023–2030

    Article  CAS  Google Scholar 

  • Reinke R, Kim SM, Kim BK (2018) Developing japonica rice introgression lines with multiple resistance genes for brown planthopper, bacterial blight, rice blast, and rice stripe virus using molecular breeding. Mol Genet Genomics 293(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Srivastava P, Mavi GS et al (2021) Resurrection of wheat cultivar PBW343 using marker-assisted gene pyramiding for rust resistance. Front Plant Sci 12:570408

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi L, Weng J, Liu C et al (2013) Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea Mays L.). Mol Genet Genomics 288(3–4):89–99

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Liu Q, Wang H et al (2013) Identification and fine-mapping of a QTL, qMrdd1, that confers recessive resistance to maize rough dwarf disease. BMC Plant Biol 13:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong L, Yan M, Zhu M et al (2022) ZmCCT haplotype H5 improves yield, stalk-rot resistance, and drought tolerance in maize. Front Plant Sci 13:984527

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yang Q, Wang W et al (2017) A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol 215(4):1503–1515

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang Q, Dai Z et al (2019) Identification of QTLs for resistance to maize rough dwarf disease using two connected RIL populations in maize. PLoS ONE 14(12):e0226700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Liu J, Lyu Y et al (2022a) A review of vector-borne rice viruses. Viruses 14(10):2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Du K, Jiang T et al (2022b) Comparative proteomic analyses of susceptible and resistant maize inbred lines at the stage of enations forming following infection by rice black-streaked dwarf virus. Viruses 14(12):2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhang M, Hu Y et al (2023) Pyramiding of adult-plant resistance genes enhances all-stage resistance to wheat stripe rust. Plant Dis 107(3):879–885

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Hua J, Wang F et al (2020) Marker-assisted selection of qMrdd8 to improve maize resistance to rough dwarf disease. Breed Sci 70(2):183–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Wang F, Zhou Z et al (2022) Identification and fine-mapping of a novel QTL, qMrdd2, that confers resistance to maize rough dwarf disease. Plant Dis 106(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhou Z, Cheng Z et al (2023) A transcription factor ZmGLK36 confers broad resistance to maize rough dwarf disease in cereal crops. Nat Plants 9(10):1720–1733

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang A, Wang M et al (2022) ATP-binding cassette transporters ABCF2 and ABCG9 regulate rice black-streaked dwarf virus infection in its insect vector, Laodelphaxstriatellus (Fallén). B Entomol Res 112(3):327–334

    Article  CAS  Google Scholar 

  • Ye J, Zhong T, Zhang D et al (2019) The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant 12(3):360–373

    Article  CAS  PubMed  Google Scholar 

  • Yue R, Sun Q, Ding J et al (2022) Functional analysis revealed the involvement of ZmABCB15 in resistance to rice black-streaked dwarf virus infection. BMC Plant Biol 22(1):484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Dong Y, Wang M et al (2021a) MicroRNA-315-5p promotes rice black-streaked dwarf virus infection by targeting a melatonin receptor in the small brown planthopper. Pest Manag Sci 77(7):3561–3570

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang Z, Ma H et al (2021b) Pyramiding of Fusarium head blight resistance quantitative trait loci, Fhb1, Fhb4, and Fhb5, in modern Chinese wheat cultivars. Front Plant Sci 12:694023

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Qi X, Li X et al (2022) Introgression of the RppQ gene from field corn improves southern rust resistance in sweet corn. Mol Breed 42(9):53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Tan G, Xing Y et al (2012) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breed 30(2):1077–1088

    Article  Google Scholar 

  • Zhao M, Liu S, Pei Y et al (2022) Identification of genetic loci associated with rough dwarf disease resistance in maize by integrating GWAS and linkage mapping. Plant Sci 315:111100

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Xiong H, Fu M et al (2023) Genetic mapping and identification of Rht8-B1 that regulates plant height in wheat. BMC Plant Biol 23(1):333

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo W, Chao Q, Zhang N et al (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47(2):151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Key Research and Development Program of China (2022YFD1201802), the National Natural Science Foundation of China (32301799) and the Agricultural Science & Technology Innovation Program.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed and conceived by JW and JZ; GL and ZX were responsible for data analysis, manuscript writing, and artificial inoculation of RBSDV; ZZ and JH extracted the DNA; XL, ZH and ML provided the material; DZ, JW, CM and HY recorded and analyzed the agronomic traits and MRDD resistance. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Jiqiang Zhao or Jianfeng Weng.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1057 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xu, Z., Wang, J. et al. Gene pyramiding of ZmGLK36 and ZmGDIα-hel for rough dwarf disease resistance in maize. Mol Breeding 44, 25 (2024). https://doi.org/10.1007/s11032-024-01466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-024-01466-9

Keywords

Navigation