Skip to main content
Log in

Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Wollaroi, an Australian durum wheat cultivar, produced a low stripe rust response and the alternative parent Bansi was highly susceptible. The Wollaroi/Bansi recombinant inbred line (RIL) population was phenotyped across three consecutive crop seasons. A genetic map of the Wollaroi/Bansi RIL population comprising 799 markers (diversity arrays technology and simple sequence repeat markers) was used to determine the genomic location of stripe rust resistance genes carried by the cultivar Wollaroi. Composite interval mapping detected three consistent quantitative trait loci (QTL) in chromosomes 2A, 3B and 5B. These QTL were named QYr.sun-2A, QYr.sun-3B and QYr.sun-5B. Another QTL, QYr.sun-1B, was detected only in the 2009 crop season. QTL in chromosomes 1B, 2A, 3B and 5B explained on average 6, 9.3, 26.7 and 8.7 %, respectively, of the variation in stripe rust response. All QTL were contributed by Wollaroi. RILs carrying these QTL singly produced intermediate stripe rust severities ranging from 46.2 to 55.7 %, whereas RILs with all four QTL produced the lowest disease severity (34.3 %). The consistently low stripe rust response of Wollaroi for 20 years demonstrated the durability of the resistance loci involved. The QTL combination detected in this study is being transferred to common wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bariana HS, McIntosh RA (1995) Genetics of adult plant stripe rust resistance in four Australian wheats and the French cultivar ‘Hybride-de-Bersee’. Plant Breed 114:485–491

    Article  Google Scholar 

  • Bariana H, Bansal U, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre C (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    Article  CAS  Google Scholar 

  • Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111–118

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chu C, Souza EJ, Guttieri MJ, Chen X, Xu S, Hole D, Zemetra R (2012) Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Theor Appl Genet 29:791–800

    CAS  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Parshar M, Bains NS, Goel RK, Keller B, Dhalliwal HS, Singh K (2007) Mapping of adult plant stripe rust resistance genes in diploid A genome species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    Article  PubMed  Google Scholar 

  • Cockerham CC (1983) Covariances of relatives from self-fertilization. Crop Sci 23:1177–1180

    Article  Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Elouafi W, Nachit MM (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Article  CAS  PubMed  Google Scholar 

  • Gerechter-Amitai ZK, van Silfhout CH, Gramal A, Kleitman F (1989) Yr15—a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel G-25. Euphytica 43:187–190

    Article  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011a) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Salazar VC, Lagudah ES (2011b) First report of slow rusting gene Lr46 in durum wheat. In: Technical workshop in borlaug global rust initiative, June 13–16, 2011, St. Paul, MN, USA, p 191

  • Lin F, Chen X (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 118:631–642

    Article  CAS  PubMed  Google Scholar 

  • Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157

    Article  PubMed  Google Scholar 

  • Lu Y, Lan C, Liang S, Zhou X, Liu D, Xhou G, Lu Q, Jing J, Wang M, Xia X, He Z (2009) QTL mapping of adult-plant resistance to stripe rust in Italian common wheat cultivars Libelulla and Strampelli. Theor Appl Genet 119:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Singh RP, Abdalla O (1997) Resistance to stripe rust in five durum wheat cultivars. Plant Dis 81:27–30

    Article  Google Scholar 

  • Ma J, Zhou R, Dong Y, Wang L, Wang X, Jia J (2001) Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120:219–226

    Article  CAS  Google Scholar 

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammal Genome 12:930–932

    Article  CAS  Google Scholar 

  • Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, Vita PD, Cattivelli L, Papa R, Balnco A, Mastrangelo AM (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • McIntosh RA, Lagudah ES (2000) Cytogenetical studies in wheat. XVIII. Gene Yr24 for resistance to stripe rust. Plant Breed 119:81–83

    Article  CAS  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, Melbourne, p 199

    Book  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R, Xias XC (2011) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

  • Nachit MM, Eloua WI, Pagnotta MA, El Saleh A, Iacono E, Labhili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J-M, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecfic recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    Article  CAS  Google Scholar 

  • O’Brien L, Brown JS, Young RM, Pascoe I (1980) Occurrence and distribution of wheat stripe rust in Victoria and susceptibility of commercial wheat cultivars. Australas Plant Pathol 9:14

    Article  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Roder MS, Kilian A, Korol AB, Fahima T (2008) High density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  CAS  PubMed  Google Scholar 

  • Peng JH, Fahima T, Roder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Grama A, Nevo E (2000) Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol 146:141–154

    Article  CAS  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26:496–500

    Article  Google Scholar 

  • Qamar Z (2010) Genetic characterization of the rust resistance and quality traits in wheat. PhD thesis. University of Sydney, Australia

  • Ren Y, He Z, Li J, Lillemo M, Wu L, Bai B, Lu Q, Zhu H, Zhou G, Du J, Lu Q, Xia X (2012a) QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221

    Article  PubMed  Google Scholar 

  • Ren RS, Wang MN, Chen XM, Zhang ZJ (2012b) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet 125:847–857. doi:10.1007/s00122-012-1877-8

    Article  CAS  PubMed  Google Scholar 

  • Singh RP (1992) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82:835–838

    Article  Google Scholar 

  • Singh RP, Rajaram S (1992) Genetics of adult-plant resistance to leaf rust in ‘Frontana’ and three CIMMYT wheats. Genome 35:24–31

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Hung 35:133–139

    CAS  Google Scholar 

  • Singh RP, Huerto-Espino J, William MH (2001) Slow rusting gene based resistance to leaf and yellow rusts in wheat: genetics and breeding at CIMMYT. In: Proceedings of the 10th assembly of the wheat breeding Society of Australia Inc., Mildura, Australia, 16–21 September, 2001. Wheat Breeding Society of Australia, Australia, pp 103–108

  • Singh B, Bansal UK, Hare RA, Bariana HS (2013) Genetic analysis of durable adult plant stripe rust in durum wheat cultivars. Aust J Crop Sci 7:550–554

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown Guedira GL, Gay G, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  CAS  PubMed  Google Scholar 

  • Venkata BP, Singh B, Hare RA, Bariana HS (2006) Genetics of adult plant stripe rust resistance in three durum cultivars. J Genet Breed 60:301–306

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wellings CR, McIntosh RA (1990) P. striiformis f. sp. tritici in Australasia: pathogenic changes in the first 10 years. Plant Pathol 39:316–325

    Article  Google Scholar 

  • Wellings CR, Wright DG, Keiper F, Loughman R (2003) First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Australas Plant Pathol 32:321–322

    Article  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Ortiz Islas S, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1968) Evolution and genetics of populations. Genetics and biometric foundations, vol 1. University of Chicago Press, Chicago

    Google Scholar 

  • Zadoks JC (1961) Yellow rust on wheat. Studies of epidemiology and physiologic specialization. Neth J Plant Pathol 67:69–256

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Grains Research Development Corporation, Australia for funding. The award of a International Postgraduate Research Scholarship (IPRS) and International Postgraduate Award (IPA) to Baljit Singh by the University of Sydney is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harbans S. Bariana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, U.K., Kazi, A.G., Singh, B. et al. Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breeding 33, 51–59 (2014). https://doi.org/10.1007/s11032-013-9933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9933-x

Keywords

Navigation