Skip to main content

Advertisement

Log in

Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and CNS damage after middle cerebral artery occlusion (MCAO) that could be prevented by transfer of IL-10+ B-cells. The purpose of this study was to determine if the beneficial immunoregulatory effects on MCAO of the IL-10+ B-cell subpopulation also extends to B-cell-sufficient mice that would better represent stroke subjects. CNS inflammation and infarct volumes were evaluated in male C57BL/6J (WT) mice that received either RPMI or IL-10+ B-cells and underwent 60 min of middle cerebral artery occlusion (MCAO) followed by 96 h of reperfusion. Transfer of IL-10+ B-cells markedly reduced infarct volume in WT recipient mice when given 24 h prior to or 4 h after MCAO. B-cell protected (24 h pre-MCAO) mice had increased regulatory subpopulations in the periphery, reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres of the IL-10+ B-cell-treated group. Moreover, transfer of IL-10+ B-cells 24 h before MCAO led to a significant preservation of regulatory immune subsets in the IL-10+ B-cell protected group presumably indicating their role in immunomodulatory mechanisms, post-stroke. Our studies are the first to demonstrate a major immunoregulatory role for IL-10+ regulatory B-cells in preventing and treating MCAO in WT mice and also implicating their potential role in attenuating complications due to post-stroke immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

MCAO:

Middle cerebral artery occlusion

WT:

wild-type

TNF-α:

Tumor necrosis factor α

INF-γ:

Interferon γ

CD:

Cluster of Differentiation

MHC II:

Major Histocompatibility Complex II

RPMI:

Roswell Park Memorial Institute

IL:

Interleukin

PBS:

Phosphate-buffered saline

DNase I:

Deoxyribonuclease I

FACS:

Fluorescence Activated Cell Sorter

PI:

Propidium iodide

References

  • Arumugam TV, Granger DN, Mattson MP (2005) Stroke and T-cells. Neuromolecular Med 7(3):229–242. doi:10.1385/NMM:7:3:229

    Article  CAS  PubMed  Google Scholar 

  • Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H (2013a) IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis 28(3):375–386. doi:10.1007/s11011-013-9413-3

    Article  CAS  PubMed  Google Scholar 

  • Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H (2013b) PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation 10(1):111. doi:10.1186/1742-2094-10-111

    Article  PubMed Central  PubMed  Google Scholar 

  • Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BR, Drummond GR, Sobey CG (2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab 30(7):1306–1317. doi:10.1038/jcbfm.2010.14

    Article  CAS  Google Scholar 

  • Campanella M, Sciorati C, Tarozzo G, Beltramo M (2002) Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 33(2):586–592

    Article  PubMed  Google Scholar 

  • Castillo J, Davalos A, Noya M (1997) Progression of ischaemic stroke and excitotoxic aminoacids. Lancet 349(9045):79–83. doi:10.1016/S0140-6736(96)04453-4

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Bodhankar S, Murphy SJ, Vandenbark AA, Alkayed NJ, Offner H (2012) Intrastriatal B-cell administration limits infarct size after stroke in B-cell deficient mice. Metab Brain Dis 27(4):487–493. doi:10.1007/s11011-012-9317-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Wu H, Klebe D, Hong Y, Zhang J, Tang J (2013) Regulatory T cell in stroke: a new paradigm for immune regulation. Clin Dev Immunol 2013:689827. doi:10.1155/2013/689827

    PubMed Central  PubMed  Google Scholar 

  • Davalos A, Toni D, Iweins F, Lesaffre E, Bastianello S, Castillo J (1999) Neurological deterioration in acute ischemic stroke: potential predictors and associated factors in the European cooperative acute stroke study (ECASS) I. Stroke 30(12):2631–2636

    Article  CAS  PubMed  Google Scholar 

  • Dirnagl U (2004) Inflammation in stroke: the good, the bad, and the unknown. Ernst Schering Res Found Workshop 47:87–99

    PubMed  Google Scholar 

  • Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371(9624):1612–1623. doi:10.1016/S0140-6736(08)60694-7

    Article  CAS  PubMed  Google Scholar 

  • Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3(10):944–950. doi:10.1038/ni833

    Article  CAS  PubMed  Google Scholar 

  • Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857. doi:10.1161/STROKEAHA.108.534503

    Article  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127(1):e6–e245. doi:10.1161/CIR.0b013e31828124ad

    Article  PubMed  Google Scholar 

  • Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27(11):1798–1805. doi:10.1038/sj.jcbfm.9600482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808. doi:10.1038/nm.2399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Investigators EAST (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology, vol 57, 2001/10/24 edn

  • Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835–3842. doi:10.1182/blood-2009-10-249078

    Article  CAS  PubMed  Google Scholar 

  • Konoeda F, Shichita T, Yoshida H, Sugiyama Y, Muto G, Hasegawa E, Morita R, Suzuki N, Yoshimura A (2010) Therapeutic effect of IL-12/23 and their signaling pathway blockade on brain ischemia model. Biochem Biophys Res Commun 402(3):500–506. doi:10.1016/j.bbrc.2010.10.058

    Article  CAS  PubMed  Google Scholar 

  • Korpos E, Wu C, Song J, Hallmann R, Sorokin L (2010) Role of the extracellular matrix in lymphocyte migration. Cell Tissue Res 339(1):47–57. doi:10.1007/s00441-009-0853-3

    Article  CAS  PubMed  Google Scholar 

  • Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T, Berthele A, Hemmer B (2012) CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation 9:93. doi:10.1186/1742-2094-9-93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199. doi:10.1038/nm.1927

    Article  CAS  PubMed  Google Scholar 

  • Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, Sommer C, Dalpke AH, Veltkamp R (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134(Pt 3):704–720. doi:10.1093/brain/awr008

    Article  PubMed  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415. doi:10.1038/nrn1106

    Article  CAS  PubMed  Google Scholar 

  • Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, Hori M, Matsumoto M (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31(7):1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10(5):471–480. doi:10.1016/S1474-4422(11)70066-7

    Article  CAS  PubMed  Google Scholar 

  • Madan R, Demircik F, Surianarayanan S, Allen JL, Divanovic S, Trompette A, Yogev N, Gu Y, Khodoun M, Hildeman D, Boespflug N, Fogolin MB, Grobe L, Greweling M, Finkelman FD, Cardin R, Mohrs M, Muller W, Waisman A, Roers A, Karp CL (2009) Nonredundant roles for B cell-derived IL-10 in immune counter-regulation. J Immunol 183(4):2312–2320. doi:10.4049/jimmunol.0900185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN (2007) B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 178(6):3447–3456

    CAS  PubMed  Google Scholar 

  • Matsushita T, Horikawa M, Iwata Y, Tedder TF (2010) Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol 185(4):2240–2252. doi:10.4049/jimmunol.1001307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mena H, Cadavid D, Rushing EJ (2004) Human cerebral infarct: a proposed histopathologic classification based on 137 cases. Acta Neuropathol 108(6):524–530. doi:10.1007/s00401-004-0918-z

    Article  PubMed  Google Scholar 

  • Offner H, Hurn PD (2012) A novel hypothesis: regulatory B lymphocytes shape outcome from experimental stroke. Transl Stroke Res 3(3):324–330. doi:10.1007/s12975-012-0187-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006a) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26(5):654–665. doi:10.1038/sj.jcbfm.9600217

    Article  CAS  PubMed  Google Scholar 

  • Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD (2006b) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176(11):6523–6531

    CAS  PubMed  Google Scholar 

  • Offner H, Vandenbark AA, Hurn PD (2009) Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression. Neuroscience 158(3):1098–1111. doi:10.1016/j.neuroscience.2008.05.033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, Offner H (2011) Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 31(23):8556–8563. doi:10.1523/JNEUROSCI.1623-11.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H (2004) Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 200(9):1123–1134. doi:10.1084/jem.20040395

    Article  PubMed Central  PubMed  Google Scholar 

  • Rifa’i M, Shi Z, Zhang SY, Lee YH, Shiku H, Isobe K, Suzuki H (2008) CD8+CD122+ regulatory T cells recognize activated T cells via conventional MHC class I-alphabetaTCR interaction and become IL-10-producing active regulatory cells. Int Immunol 20(7):937–947. doi:10.1093/intimm/dxn052

    Article  PubMed  Google Scholar 

  • Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950. doi:10.1038/nm.1999

    Article  CAS  PubMed  Google Scholar 

  • Stubbe T, Ebner F, Richter D, Randolf Engel O, Klehmet J, Royl G, Meisel A, Nitsch R, Meisel C, Brandt C (2013) Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab 33(1):37–47. doi:10.1038/jcbfm.2012.128

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Yates M, Vandenbark AA, Offner H (2011) Oestrogen-mediated protection of experimental autoimmune encephalomyelitis in the absence of Foxp3+ regulatory T cells implicates compensatory pathways including regulatory B cells. Immunology 132(3):340–347. doi:10.1111/j.1365-2567.2010.03380.x

    Article  CAS  PubMed  Google Scholar 

  • Tuttolomondo A, Di Raimondo D, di Sciacca R, Pinto A, Licata G (2008) Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des 14(33):3574–3589

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68. doi:10.1016/j.jneuroim.2006.11.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6(1):11. doi:10.1186/1750-1326-6-11

    Article  PubMed Central  PubMed  Google Scholar 

  • Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF (2008) A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28(5):639–650. doi:10.1016/j.immuni.2008.03.017

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106(2):584–592. doi:10.1182/blood-2004-12-4942

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Subramanian S, Dziennis S, Jia J, Uchida M, Akiyoshi K, Migliati E, Lewis AD, Vandenbark AA, Offner H, Hurn PD (2010) Estradiol and G1 reduce infarct size and improve immunosuppression after experimental stroke. J Immunol 184(8):4087–4094. doi:10.4049/jimmunol.0902339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, Grabe N, Veltkamp R (2013) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23(1):34–44. doi:10.1111/j.1750-3639.2012.00614.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Andrew Lapato for technical assistance and Melissa S. Barber for assistance with manuscript submission. This work was supported by NIH/NINDS 1RO1 NS075887. This material is based upon work supported in part by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research and Development. The contents do not represent the views of the Department of Veterans Affairs or the United States Government.

Competing interests

The authors declare no competing financial interests.

Authors’ contribution

SB designed, performed the immunology experiments, carried out statistical analyses, prepared graphics and wrote the manuscript; YC performed the MCAO procedures, carried out statistical analyses, prepared the graphics and wrote the methods and results for infarct volume data; AAV critiqued and edited the manuscript; SJM directed study design and data analysis of the MCAO experiments and edited the manuscript; HO directed the overall study, supervised the immunological studies and data analysis and edited the manuscript. All authors read and approved the final version of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Offner.

Additional information

Sheetal Bodhankar and Yingxin Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodhankar, S., Chen, Y., Vandenbark, A.A. et al. Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice. Metab Brain Dis 29, 59–73 (2014). https://doi.org/10.1007/s11011-013-9474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9474-3

Keywords

Navigation