Skip to main content

Advertisement

Log in

Human cerebral infarct: a proposed histopathologic classification based on 137 cases

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

We studied the microscopic features of 137 cases of human cerebral infarct. In each case, the age of the lesion was determined by measuring the time elapsed between initial clinical presentation and date of surgery or death. Multiple microscopic variables were analyzed on hematoxylin and eosin-stained sections. There were 104 (76%) male and 33 (24%) female patients with a median age of 64 years. The location of the infarcts included 129 cerebral, 5 cerebellar, and 1 each in the pons, midbrain and medulla. The age of the lesions ranged from 1 day to 53 years. All lesions were single and varied from lacunes to large infarcts in the distribution of one or more cerebral arteries. Key histologic features of the proposed classification are as follows: (1) phase of acute neuronal injury (11 cases studied), age 1–2 days, characterized by the presence of neuronal changes, and spongiosis of the neuropil and absence of neuronal ferrugination, chronic inflammation, macrophages, neo-vascularization and cavitation; (2) phase of organization subdivided into: (a) phase of acute inflammation (31 cases), age 3–37 days, characterized by coagulative necrosis, and frequent acute inflammation, and (b) phase of chronic inflammation (57 cases), age 10 days–53 years, characterized by the presence or absence of coagulative necrosis, neuronal injury, red neurons, macrophages, mononuclear inflammatory cells, perivascular cuffing, cavitation, gliosis, spheroids; absence of neutrophils; and (3) phase of resorption (38 cases), age 26 days–23 years, characterized by absence of an inflammatory response. Neuronophagia is not a feature of cerebral infarcts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 A

Similar content being viewed by others

References

  1. Adams RD (1954) Mechanism of apoplexy as determined by clinical and pathological correlation. J Neuropathol Exp Neurol13:1–13

    Google Scholar 

  2. Chuaqui R, Tapia J (1993) Histologic assessment of the age of recent brain infarcts in man. J Neuropathol Exp Neurol 52:481–489

    CAS  PubMed  Google Scholar 

  3. DeGirolami U, Crowell RM, Marcoux FW (1984) Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey J Neuropathol Exp Neurol 43:57–71

    CAS  Google Scholar 

  4. Garcia JH (1983) Ischemic injuries of the brain: morphologic evolution. Arch Pathol Lab Med 107:157–161

    CAS  PubMed  Google Scholar 

  5. Garcia JH (1992) The evolution of brain infarcts: a review. J Neuropathol Exp Neurol 51:387–393

    CAS  PubMed  Google Scholar 

  6. Garcia JH, Kamijyo Y (1974) Cerebral infarction. Evolution of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropathol Exp Neurol 33:408–421

    CAS  PubMed  Google Scholar 

  7. Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, Chen S, Chopp M (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol142:623–635

    Google Scholar 

  8. Garcia JH, Liu KF, Ye ZR, Gutierrez JA (1997) Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke 28:2303–2309

    CAS  PubMed  Google Scholar 

  9. Hanyu S, Ito U, Hakamata Y, Nakano I (1997) Topographical analysis of cortical neuronal loss associated with disseminated selective neuronal necrosis and infarction after repeated ischemia. Brain Res 767:154–157

    Article  CAS  PubMed  Google Scholar 

  10. Hart MN, Galloway GM, Dunn MJ (1975). Perivascular anoxia-ischemia lesions in the human brain. Neurology 25:477–482

    CAS  PubMed  Google Scholar 

  11. Ito U, Go KG, Walker JT Jr, Spatz M, Klatzo I (1976) Experimental cerebral ischemia in Mongolian gerbils III. Behaviour of the blood-brain barrier. Acta Neuropathol (Berl) 34:1–6

    Google Scholar 

  12. Ito U, Kuroiwa T, Hanyu S, Hakamata Y, Kawakami E, Nakano I, Oyanagi K (2003) Temporal profile of experimental ischemic edema after threshold amount of insult to induce infarction—ultrastructure, gravimetry and Evans’ blue extravasation. Acta Neurochir Suppl 86:131–135

    CAS  PubMed  Google Scholar 

  13. Jellinger KA (2002) The pathology of ischemic-vascular dementia: an update. J Neurol Sci 203–204:153–157

    Google Scholar 

  14. Kamijyo Y, Garcia JH, Cooper J (1977) Temporary regional cerebral ischemia in the cat. A model of hemorrhagic and subcortical infarction. J Neuropathol Exp Neurol 36: 338–350

    CAS  PubMed  Google Scholar 

  15. Kelly PJ, Hedley-Whyte ET, Primavera J, He J, Gonzalez RG (2001) Diffusion MRI in ischemic stroke compared to pathologically verified infarction. Neurology 56:914–920

    CAS  PubMed  Google Scholar 

  16. Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 64:139–147

    Google Scholar 

  17. Kuroiwa T, Okeda R (1994) Neuropathology of cerebral ischemia and hypoxia: recent advances in experimental studies on its pathogenesis. Pathol Int 44:171–181

    CAS  PubMed  Google Scholar 

  18. Love S, Barber R, Wilcock GK (2000) Neuronal death in brain infarcts in man. Neuropathol Appl Neurobiol 26:55–66

    Article  CAS  PubMed  Google Scholar 

  19. Nagasawa H, Kogure K (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037–1043

    CAS  PubMed  Google Scholar 

  20. Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646

    Google Scholar 

  21. Petito CK (1979) Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38:222–234

    CAS  PubMed  Google Scholar 

  22. Towfighi J, Mauger D (1998) Temporal evolution of neuronal changes in cerebral hypoxia-ischemia in developing rats: a quantitative light microscopic study. Brain Res Dev Brain Res 109:169–177

    Article  CAS  PubMed  Google Scholar 

  23. Towfighi J, Zec N, Yager J, Housman C, Vannucci RC (1995) Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study. Acta Neuropathol 90:375–386

    Article  CAS  PubMed  Google Scholar 

  24. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 100:149–160

    Article  CAS  PubMed  Google Scholar 

  25. Vannucci RC, Christensen MA, Yager JY (1993) Nature, time-course, and extent of cerebral edema in perinatal hypoxic-ischemic brain damage. Pediatr Neurol 9:29–34

    Article  CAS  PubMed  Google Scholar 

  26. Warlow C, Sudlow C, Dennis M, Wardlaw J, Sandercock P (2003) Stroke. Lancet 362:1211–1224

    Article  PubMed  Google Scholar 

  27. Yamauchi H, Fukuda H, Oyanagi C (2002) Significance of white matter high intensity lesions as a predictor of stroke from arteriolosclerosis J Neurol Neurosurg Psychiatry 72:576–582

    Article  CAS  Google Scholar 

  28. Zhang RL, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Mena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mena, H., Cadavid, D. & Rushing, E.J. Human cerebral infarct: a proposed histopathologic classification based on 137 cases. Acta Neuropathol 108, 524–530 (2004). https://doi.org/10.1007/s00401-004-0918-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0918-z

Keywords

Navigation