Skip to main content
Log in

Modelling and analysis of thermal conductivity of a hybrid polymer composite reinforced with particulate rice husk and particulate carbon fibre

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study investigates the effective thermal conductivity of a polymer composite reinforced with particulate rice husk (PRH) and particulate carbon fibre (PCF) developed by hand lay-up process. The thermal conductivity of the developed composites at different fibre volume fraction % (FVF) of PRH and PCF at different particle size ratios is analysed by experimentation. Then a mathematical model is developed to find the analytical solution for effective thermal conductivity of the composites. For the developed model, a nonlinear AMPL (A Mathematical Programming Language) programming model is established to find the analytical solution. It is enthusiastic to observe that the experimental values for effective thermal conductivity are in close approximation with the analytical values obtained from the developed AMPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nabi Saheb D, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18(4):351.

    Article  Google Scholar 

  2. Mishra S, Mohanty AK, Drzal LT, Misra M, Parija S, Nayak SK, et al. Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol. 2003;63(10):1377.

    Article  CAS  Google Scholar 

  3. Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des. 2010;31(10):4927.

    Article  CAS  Google Scholar 

  4. Ramesh M, Palanikumar K, Reddy KH. Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites. Procedia Eng. 2013;51:745.

    Article  CAS  Google Scholar 

  5. Khanam PN, Khalil HPSA, Jawaid M, Reddy GR, Narayana CS, Naidu SV. Sisal/Carbon Fibre Reinforced Hybrid Composites: Tensile, Flexural and Chemical Resistance Properties. J Polym Environ. 2010;18:727.

    Article  Google Scholar 

  6. Fiore V, Valenza A, Di Bella G. Mechanical behavior of carbon/flax hybrid composites for structural applications. J Compos Mater. 2012;46:2089.

    Article  Google Scholar 

  7. Nisini E, Santulli C, Liverani A. Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Compos Part B Eng. 2017;127:92.

    Article  CAS  Google Scholar 

  8. Ashworth S, Rongong J, Wilson P, Meredith J. Mechanical and damping properties of resin transfer moulded jute-carbon hybrid composites. Compos Part B Eng. 2016;105:60.

    Article  CAS  Google Scholar 

  9. Satapathy A, Kumar Jha A, Mantry S, Singh SK, Patnaik A. Processing and characterization of jute-epoxy composites reinforced with SiC derived from rice husk. J Reinf Plast Compos. 2010;29(18):2869.

    Article  CAS  Google Scholar 

  10. Yan W-T, Ye W-B, Du J, Hong Y. Improvement of acid modification and its effect on the adsorption of stearic acid into sepiolite. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10633-5.

    Article  Google Scholar 

  11. Hong Y, Ye W-B, Huang S-M, Du J. Can the melting behaviors of solid-liquid phase change be improved by inverting the partially thermal-active rectangular cavity? Int J Heat Mass Transf. 2018;126:571–8.

    Article  CAS  Google Scholar 

  12. Sofian NM, Rusu M, Neagu R, Neagu E. Metal powder-filled polyethylene composites V Thermal properties. J Thermoplast Compos Mater. 2001;14(1):20–33.

    Article  CAS  Google Scholar 

  13. Mamunya YP, Davydenko VV, Pissis P, Lebedev EV. Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J. 2002;38(9):1887–97.

    Article  CAS  Google Scholar 

  14. Tavman IH. Thermal and mechanical properties of aluminum powder-filled high-density polyethylene composites. J Appl Polym Sci. 1996;62(12):2161–7.

    Article  CAS  Google Scholar 

  15. Chen L, Sun YY, Lin J, Du XZ, Wei GS, He SJ, et al. Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler. Int J Heat Mass Transf. 2015;81:457–64.

    Article  Google Scholar 

  16. Sanada K, Tada Y, Shindo Y. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos Part A Appl Sci Manuf. 2009;40(6):724–30.

    Article  Google Scholar 

  17. Zhou S, Xu J, Yang QH, Chiang S, Li B, Du H, et al. Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon. 2013;57:452–9.

    Article  CAS  Google Scholar 

  18. Song YS, Youn JR. Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method. Carbon. 2006;44(4):710–7.

    Article  CAS  Google Scholar 

  19. Liu Z, Guo Q, Shi J, Zhai G, Liu L. Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon. 2008;46(3):414–21.

    Article  CAS  Google Scholar 

  20. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci. 2011;36(7):914–44.

    Article  CAS  Google Scholar 

  21. Li H, Chen W, Xu J, Li J, Gan L, Chu X, et al. Enhanced thermal conductivity by combined fillers in polymer composites. Thermochim Acta. 2019;676:198.

    Article  CAS  Google Scholar 

  22. Sathishkumar TP, Naveen J, Satheeshkumar S. Hybrid fiber reinforced polymer composites – a review J Reinf Plast Compos. USA: SAGE Publications Ltd STM; 2014.

    Google Scholar 

  23. Mishra D. A study on thermal and dielectric characteristics of solid glass microsphere filled epoxy composites. Ph.D thesis. 2014.

  24. Yung KC, Zhu BL, Yue TM, Xie CS. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos Sci Technol. 2009;69:260.

    Article  CAS  Google Scholar 

  25. Li X, Tabil LG, Oguocha IN, Panigrahi S. Thermal diffusivity, thermal conductivity, and specific heat of flax fiber-HDPE biocomposites at processing temperatures. Compos Sci Technol. 2008;68:1753.

    Article  CAS  Google Scholar 

  26. Bakare IO, Okieimen FE, Pavithran C, Abdul Khalil HPS, Brahmakumar M. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des. 2010;31(9):4274.

    Article  CAS  Google Scholar 

  27. Mounika M, Ramaniah K, Ratna Prasad AV, Rao KM, Hema Chandra Reddy K. Thermal conductivity characterization of bamboo fiber reinforced polyester composite. J Mater Environ Sci. 2012;3(6):1109.

    CAS  Google Scholar 

  28. Arrakhiz FZ, El Achaby M, Malha M, Bensalah MO, Fassi-Fehri O, Bouhfid R, et al. Mechanical and thermal properties of natural fibers reinforced polymer composites: doum/low density polyethylene. Mater Des. 2013;43:200.

    Article  CAS  Google Scholar 

  29. Hill RF, Supancic PH. Thermal conductivity of platelet-filled polymer composites. J Am Ceram Soc. 2002;85(4):851–7.

    Article  CAS  Google Scholar 

  30. Leung SN, Khan MO, Chan E, Naguib H, Dawson F, Adinkrah V, et al. Analytical modeling and characterization of heat transfer in thermally conductive polymer composites filled with spherical particulates. Compos Part B Eng. 2013;45(1):43.

    Article  CAS  Google Scholar 

  31. Kumlutas D, Tavman IH. A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplast Compos Mater. 2006;19(4):441.

    Article  CAS  Google Scholar 

  32. Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems I The electric conductivity of a suspension of homogeneous spheroids. Phys Rev. 1924;24(5):575.

    Article  CAS  Google Scholar 

  33. Lewis TB, Nielsen LE. Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci. 1970;14(6):1449–71.

    Article  CAS  Google Scholar 

  34. Cheng SC, Vachon RI. A technique for predicting the thermal conductivity of suspensions, emulsions and porous materials. Int J Heat Mass Transf. 1970;13:537–46.

    Article  CAS  Google Scholar 

  35. Agari Y, Uno T. Estimation on thermal conductivities of filled polymers. J Appl Polym Sci. 1986;32:5705–12.

    Article  CAS  Google Scholar 

  36. Ngo IL, Byon C, Lee BJ. Analytical study on thermal conductivity enhancement of hybrid-filler polymer composites under high thermal contact resistance. Int J Heat Mass Transf. 2018;126:474–84.

    Article  Google Scholar 

  37. Agrawal A, Satapathy A. Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. Int J Therm Sci. 2015;89:203–9.

    Article  CAS  Google Scholar 

  38. International A. Standard test method for evaluating the resistance to thermal transmission of materials by the guarded heat flow meter technique. Des. E1530--11 2011.

  39. Justin E (2014) Investigation on thermal properties of composite of rice husk, corncob and baggasse for building thermal insulation. 3:30–34.

Download references

Acknowledgements

The authors would like to acknowledge CSIR-IMMT, Bhubaneswar, India, for the laboratory support to conduct thermal conductivity test. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

D. Jena Conceptualization, Investigation, Methodology, Data Curation, Writing—Original Draft, A.K. Das- Methodology, Validation, Writing—Review & Editing and Supervision, R.C. Mohapatra- Visualization, Supervision, S.K. Das- Validation, Writing—Original Draft, Writing—Review & Editing.

Corresponding authors

Correspondence to Alok Kumar Das or Shaswat Kumar Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

(AMPL Programming and Data file).

Programming Model

File name- hybrid.mod

set inputs;

set layers;

param k{i in inputs};

param k_m;

param k_f1;

param k_f2;

param k_b = k_m;

param r2;

param fvf2;

var fvf1 <  = 0.075, >  = 0.07499999999;

var rr = (fvf1/fvf2)^0.333;

var r1 = rr*r2;

var s_rr = r2*(((88/21)*(1 + (rr)^3))/(fvf1 + fvf2))^0.333;

var k_a = k_m + 44/21*(r1/s_rr)^2*(k_f1—k_m);

var k_c = k_m + (2/3)*(22/7)*(r2/s_rr)^2*(k_f2-k_m);

minimize etcc: s_rr*k_a*k_b*k_c/(k_a*k_c*(s_rr-2*(r1 + r2)) + 2*k_b*(r1*k_c + r2*k_a));

File name- hybrid1.mod

set inputs;

set layers;

param k{i in inputs};

param k_m;

param k_f1;

param k_f2;

param r2;

param fvf2;

var fvf1 <  = 0.3, >  = 0.29999999999;

var rr = (fvf1/fvf2)^0.333;

var r1 = rr*r2;

var s_rr = r2*(((88/21)*(1 + (rr)^3))/(fvf1 + fvf2))^0.333;

var k_a = k_m + (44/21)*(r1/s_rr)^2*(k_f1—k_m) + ((22/7)/(r1*s_rr^2))*(r2*(r1 + r2-s_rr/2)^2-(r1 + r2-s_rr/2)^3*(1/3))*(k_f2—k_m);

var k_b = k_m + (44/7)*(1/s_rr^2*(s_rr-2*r1))*(r2*(r1 + r2-s_rr/2)^2-(r1 + r2-s_rr/2)^3*(1/3))*(k_f2—k_m);

minimize etcc: s_rr*k_a*k_b/(2*k_b*r1 + k_a*(s_rr-2*r1));

Data model

Hybrid.dat

set inputs: = f2 f1 m;

set layers: = a b c;

param k_m: = 0.363;

param k_f1: = 0.039;

param k_f2: = 2.5;

param r2: = 0.0001;

param fvf2: = 0.075.

Appendix 2

(Experimental and analytical model values of effective thermal conductivity of composites at different combination of compositions).

See Tables

Table 1 Effective thermal conductivity at size ratio (r1/r2) = 1, (r1 = r2 = 100microns) and at equal % of fillers

1,

Table 2 Effective thermal conductivity at different radius ratio (r1/r2) & (r2 = 100microns) and at 2.5% Carbon

2,

Table 3 Effective thermal conductivity at different radius ratio (r1/r2) & (r2 = 100microns) and at 5% Carbon

3,

Table 4 Effective thermal conductivity at different radius ratio (r1/r2) & (r2 = 100 microns) and at 7.5% Carbon

4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, D., Das, A.K., Mohapatra, R.C. et al. Modelling and analysis of thermal conductivity of a hybrid polymer composite reinforced with particulate rice husk and particulate carbon fibre. J Therm Anal Calorim 147, 7761–7773 (2022). https://doi.org/10.1007/s10973-021-11098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11098-2

Keywords

Navigation