Skip to main content
Log in

Experimental and Computational Analysis of Thermal Characteristics of Polymer Resin Reinforced with Rice Husk and Aluminium Nitride Filler Composites

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

This research paper investigates the possibilities in enhancing the typical thermal conduction capability of particulates-filled hybrid polymer composites. Different samples of rice husk (RH) and aluminium nitride (AlN)-filled polymer composites are fabricated using simple hand layup method, while the substance of fillers (AlN and RH) in the composite is varied in the range of 0–20 wt% with various combinations. Composite samples with different ratios like 1:1, 1:3, and 3:1 wt% are used in our present study. The thermal conductivity of these samples is determined by using the hot disc method as per ASTM standards. Thermal mechanical analysis provides valuable information on the coefficient of thermal expansion and glass transition temperature (Tg) on the composite material having different ratios by using a constant force that varies with temperature. Scanning electron microscope was used to analyse the molecular structure and exterior morphology of the two different fillers, as well as their interaction with the matrix. The effectual heat conductivity of hybrid polymer resin composites is predicted using a FEM simulation method, and its values are validated with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Li, Y. Zhou, Y. Bao, W. Wei, X. Fei, X. Li, X. Liu, Bismaleimide/phenolic/epoxy ternary resin system for molding compounds in high-temperature electronic packaging applications. Ind. Eng. Chem. Res. 61(12), 4191–4201 (2022). https://doi.org/10.1021/acs.iecr.2c00048

    Article  Google Scholar 

  2. X. Wang, T. Zhao, Y. Wang, L. Zhang, L. Zou, Y. Zhang, Physical property and interface binding energy calculation of polyimide/boron nitride nanosheets thermally conductive composite insulating materials. Comput. Mater. Sci. 210, 111051 (2022). https://doi.org/10.1016/j.commatsci.2021.111051

    Article  Google Scholar 

  3. B. Zhao, Y. Wang, C. Wang, R. Zhu, N. Sheng, C. Zhu, Z. Rao, Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3. J. Energy Storage 42, 103028 (2021). https://doi.org/10.1016/j.est.2021.103028

    Article  Google Scholar 

  4. S. Wu, Q. Chen, D. Chen, D. Peng, Y. Ma, Multiscale study of thermal conductivity of boron nitride nanosheets/paraffin thermal energy storage materials. J. Energy Storage 41, 102931 (2021). https://doi.org/10.1016/j.est.2021.102931

    Article  Google Scholar 

  5. N. Naik, B. Shivamurthy, B.H.S. Thimmappa, A. Gupta, J.Z. Guo, I. Seok, A review on processing methods and characterization techniques of green composites. Eng. Sci. (2022). https://doi.org/10.30919/es8d713

    Article  Google Scholar 

  6. M. Patel, J. Janardhana Reddy, V.V. Bhanu Prasad, High thermal conductivity aluminium nitride –zirconium diboride (AlN-ZrB2) composite as microwave absorbing material. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.04.206

    Article  Google Scholar 

  7. M. Choudhury, S. Mohanty, S.K. Nayak, R. Aphale, Preparation and characterization of electrically and thermally conductive polymeric nanocomposites. J. Miner. Mater. Charact. Eng. 11, 744–756 (2012). https://doi.org/10.4236/jmmce.2012.117062

    Article  Google Scholar 

  8. T.M.L. Dang, C.-Y. Kim, Y. Zhang, J.-F. Yang, T. Masaki, D.-H. Yoon, Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres. Compos. Part B Eng. 114, 237–246 (2017). https://doi.org/10.1016/j.compositesb.2017.02.008

    Article  Google Scholar 

  9. R.M.R. Pinto, V. Gund, C. Calaza, K.K. Nagaraja, K.B. Vinayakumar, Piezoelectric aluminum nitride thin-films: a review of wet and dry etching techniques. Microelectron. Eng. (2022). https://doi.org/10.1016/j.mee.2022.111753

    Article  Google Scholar 

  10. H. Wang, Y. Ma, Q. Zheng, K. Cao, L. Yao, H. Xie, Review of recent development of MEMS speakers. Micromachines 12(10), 1257 (2021). https://doi.org/10.3390/mi12101257

    Article  Google Scholar 

  11. S. Lee, D. Park, J. Kim, 3D-printed surface-modified aluminum nitride reinforced thermally conductive composites with enhanced thermal conductivity and mechanical strength. Polym. Adv. Technol. 33(4), 1291–1297 (2022). https://doi.org/10.1002/pat.5601

    Article  Google Scholar 

  12. M. Qin, H. Lu, H. Wu, Q. He, C. Liu, X. Mu, Y. Wang, B. Jia, X. Qu, Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J. Eur. Ceram. Soc. 39(4), 952–956 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.037

    Article  Google Scholar 

  13. Au-Yu, Suzhu-Hing, Peter-Hu, Xiao-PY, IOP Publishing SP-1606–1610 IS-13VL-33 SN0022–3727, SN-1361–6463, AB-The thermal expansion behavior of polymer composites having a matrix of polystyrene containing aluminium nitride (AlN), J. Phys. D Appl. Phys. https://doi.org/10.1088/0022-3727/33/13/308UR

  14. A. Soni, A. Agrawal, Thermal properties of polymer composites filled with ceramic particles. Int. J. Eng. Res. Curr. Trends 2, 1–6 (2020)

    Google Scholar 

  15. P. Anithambigai, D. Mutharasu, L.H. Huong et al., Synthesis and thermal analysis of aluminium nitride filled epoxy composites and its effective application as thermal interface material for LED applications. J. Mater. Sci. Mater. Electron. 25, 4814–4821 (2014). https://doi.org/10.1007/s10854-014-2238-y

    Article  Google Scholar 

  16. A.K. Rout, A. Satapathy, A.K. Sahoo, D.K. Jesthi, A study on evaluation of mechanical and thermal properties of rice husk filled epoxy composites. In All India manufacturing technology, design and research conference (AIMTDR) (2014), p. 828.

  17. R.S. Chen, M. Ab Ghani, S. Ahmad, M. Salleh, M. Tarawneh, Rice husk flour biocomposites based on recycled high-density polyethylene/polyethylene terephthalate blend: effect of high filler loading on physical, mechanical and thermal properties. J. Compos. Mater. (2014). https://doi.org/10.1177/0021998314533361

    Article  Google Scholar 

  18. C. Xia, A. Garcia, S. Shi, Y. Qiu, N. Warner, Y. Wu, L. Cai, S.H. Rizvi, N. Dsouza, X. Nie, Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity. Sci. Rep. 6, 34726 (2016). https://doi.org/10.1038/srep34726

    Article  Google Scholar 

  19. A. Agrawal, A. Satapathy, Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. Int. J. Therm. Sci. 89, 203–209 (2015). https://doi.org/10.1016/j.ijthermalsci.2014.11.006

    Article  Google Scholar 

  20. D. Jena, A.K. Das, R.C. Mohapatra, Thermo-mechanical characterization of rice husk-filled carbon-reinforced hybrid polymer composites. J. Test. Eval. (2020). https://doi.org/10.1520/JTE20200256

    Article  Google Scholar 

  21. L.K. Lazzari, M.V.G. Zimmermann, D. Perondi, V.B. Zampieri, A.J. Zattera, R.M.C. Santana, Production of carbon foams from rice husk. Mater. Res. (2019). https://doi.org/10.1590/1980-5373-MR-2019-0427

    Article  Google Scholar 

  22. R.C. Mohapatra, Experimental & numerical study on thermal conductivity of rice husk filled epoxy composites. Open Access Libr. J. 5(07), 11 (2018). https://doi.org/10.4236/oalib.1104661

    Article  Google Scholar 

  23. Y.Y. Hsieh, T.Y. Chen, W.C. Kuo, Y.S. Lai, P.F. Yang, H.P. Lin, Rice husk-derived porous carbon/silica particles as green filler for electronic package application. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44699

    Article  Google Scholar 

  24. J.A. Halip, S.H. Lee, P.M. Tahir, L.T. Chuan, M.A. Selimin, H.A. Saffian, A review: chemical treatments of rice husk for polymer composites. Biointerface Res. Appl. Chem. 11(4), 12425–12433 (2021). https://doi.org/10.33263/BRIAC114.1242512433

    Article  Google Scholar 

  25. F. Nordyana, A. Rahman, A. ZafirRomli, M. Abidin, Effect of rice husk particle size on tensile and density of recycled PPVC composite. Adv. Mater. Res. 812, 145–150 (2013). https://doi.org/10.4028/www.scientific.net/amr.812.145

    Article  Google Scholar 

  26. T.E. Mokoena, M.J. Mochane, T.C. Mokhena, in Interfacial Characteristics of Nitride-Polymer Composites. Handbook of Polymer and Ceramic Nanotechnology (2021), pp. 123–138. https://doi.org/10.1007/978-3-030-40513-7_7

  27. J. Balaji, M.M. Nataraja, A. Rajesh, Experimental investigation on mechanical properties of polymer composites reinforced with aluminium nitride & rice husk. Mater. Today Proc. 52(Part 3), 1781–1787 (2022). https://doi.org/10.1016/j.matpr.2021.11.445

    Article  Google Scholar 

  28. J.E. Crespo, L. Sánchez, D. García, J. López, Study of the mechanical and morphological properties of plasticized PVC composites containing rice husk fillers. J. Reinf. Plast. Compos. 27, 229–243 (2008). https://doi.org/10.1177/0731684407079479

    Article  Google Scholar 

  29. K. Sanada, Y. Tada, Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos. Part A Appl. Sci. Manuf. 40(6), 724–730 (2009). https://doi.org/10.1016/j.compositesa.2009.02.024

    Article  Google Scholar 

  30. A. Sharma, M. Choudhary, P. Agarwal, T. Patnaik, S. Biswas, A. Patnaik, Experimental and numerical investigation of thermal conductivity of marble dust filled needle punched nonwoven jute-epoxy hybrid composite. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.097

    Article  Google Scholar 

Download references

Funding

Authors thank TEQIP III in funding the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Balaji.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests that influence the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, J., Nataraja, M.M., Sadashiva, K. et al. Experimental and Computational Analysis of Thermal Characteristics of Polymer Resin Reinforced with Rice Husk and Aluminium Nitride Filler Composites. J. Inst. Eng. India Ser. D 105, 313–321 (2024). https://doi.org/10.1007/s40033-023-00480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-023-00480-z

Keywords

Navigation