Skip to main content
Log in

Improvement of acid modification and its effect on the adsorption of stearic acid into sepiolite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To improve sepiolite's ability to absorb stearic acid, different hydrochloric acid modification conditions were used to modify sepiolite. Stearic acid was encapsulated by direct dipping modified sepiolite. The leakage test was carried out. The crystal structure, microstructure, latent heat, thermal stability and thermal conductivity were characterized. The improved acidification condition of 4 mol L−1 for hydrochloric acid concentration, 6 h for acidification time and 313.15 K for acidification temperature can improve the load rate of stearic acid for 5 mass% relative to previous experimental data, the load mass fraction of stearic acid can reach to 40%. The composite prepared by improving acidification conditions has higher latent heat of melting and solidification of 74.66 J g−1 at 346.65 K and 77.02 J g−1 at 332.05 K, respectively. The composite phase change materials prepared by physical stirring have good chemical compatibility and thermal durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jesumathy SP, Udayakumar M, Suresh S, Jegadheeswaran S. An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit. J Taiwan Inst Chem E. 2014;45:1298–306.

    Article  CAS  Google Scholar 

  2. Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  3. Wang YC, Zhang LY, Tao SY, An YL, Meng CG, Hu T. Phase change in modified hierarchically porous monolith: an extra energy increase. Micropor Mesopor Mat. 2014;193:69–76.

    Article  CAS  Google Scholar 

  4. Karaipekli A, Sari A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy. 2009;83:323–32.

    Article  CAS  Google Scholar 

  5. Sari A. Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Convers Manag. 2016;117:132–41.

    Article  CAS  Google Scholar 

  6. Attar I, Naili N, Khalifa N, Hazami M, Farhat A. Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Convers Manag. 2013;70:163–73.

    Article  CAS  Google Scholar 

  7. Ahmed M, Meade O, Medina MA. Reducing heat transfer across the insulated walls of refrigerated truck trailers by the application of phase change materials. Energy Convers Manag. 2010;51:383–92.

    Article  CAS  Google Scholar 

  8. Sharma RK, Ganesan P, Tyagi VV, Metselaar HSC, Sandaran SC. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag. 2015;95:193–228.

    Article  CAS  Google Scholar 

  9. Tatsidjodoung P, Le Pierres N, Luo LG. A review of potential materials for thermal energy storage in building applications. Renew Sust Energ Rev. 2013;18:327–49.

    Article  Google Scholar 

  10. Dentel SK, Bottero JY, Khatib K, Demougeot H, Duguet JP, Anselme C. Sorption of tannic acid, phenol, and 2,4,5-trichlorophenol on organoclays. Water Res. 1995;29:1273–80.

    Article  CAS  Google Scholar 

  11. Cheng C, Ma L, Ren J, Li LL, Zhang GF, Yang QG, Zhao CS. Preparation of polyethersulfone-modified sepiolite hybrid particles for the removal of environmental toxins. Chem Eng J. 2011;171:1132–42.

    Article  CAS  Google Scholar 

  12. Ozcan AS, Gok O. Structural characterization of dodecyl trimethylammonium (DTMA) bromide modified sepiolite and its adsorption isotherm studies. J Mol Struct. 2012;1007:36–44.

    Article  CAS  Google Scholar 

  13. Alvarez A, Santaren J, Esteban-Cubillo A, Aparicio P. Current industrial applications of palygorskite and sepiolite. In: Emilio G, Arieh S, editors. Developments in palygorskite-sepiolite research. developments in clay science. Amsterdam, The Netherlands: Elsevier; 2011. p. 281–98.

    Chapter  Google Scholar 

  14. Shen Q, Ouyang J, Zhang Y, Yang HM. Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage. Appl Clay Sci. 2017;146:14–22.

    Article  CAS  Google Scholar 

  15. Shang J, Bo N. Prepared of sepiolite phase change material and study on their thermal and moisture performance. Non Metallic Mines. 2014;37:5–11.

    CAS  Google Scholar 

  16. Jiang DH, Li AG, Shi F, Ren RS. Mineral sepiolite energy-saving residential material. Adv Mater Res. 2011;178:185–90.

    Article  CAS  Google Scholar 

  17. Jiang DH, Li AG, Shi F, Ren RS. Preparation and properties of sepiolite thermal storage composites. Adv Mater Res. 2011;183–185:1647–51.

    Article  Google Scholar 

  18. Guo ZH, Jia YK, Wang X. Research on the capric acid/paraffin and sepiolite combination as phase change energy storage materials. The 7th National Conference on Functional Materials and Applications; 2010. pp. 1927–1931.

  19. Shen Q, Liu S, Ouyang J, Yang H. Sepiolite supported stearic acid composites for thermal energy storage. RSC Adv. 2016;6:112493–501.

    Article  CAS  Google Scholar 

  20. Sari A, Sharma RK, Hekimoglu G, Tyagi VV. Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials. Energy Build. 2019;188–189:111–9.

    Article  Google Scholar 

  21. Hong YX, Yan WT, Du J, Li WY, Xu T, Ye WB. Thermal performances of stearic acid/sepiolite composite form-stable phase change materials with improved thermal conductivity for thermal energy storage. J Therm Anal Calorim. 2020;142:2163–71.

    Article  Google Scholar 

  22. Shi JW, Li YJ, Zhang Q, Ma XT, Duan LB, Zhou XG. CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions. Appl Energy. 2017;203:412–21.

    Article  CAS  Google Scholar 

  23. Ma GX, Sun JH, Zhang Y, Jing Y, Jia YZ. A novel low-temperature phase change material based on stearic acid and hexanamide eutectic mixture for thermal energy storage. Chem Phys Lett. 2019;714:166–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 19C1767), the National Natural Science Foundation of China (No. 51906094), the Public Welfare Technological Research Program of Science and Technology Department of Zhejiang Province (No. LGG18E060003) and the Research Program of Science and Technology Bureau of Lishui City (No. 2017RC03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Biao Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The instrument error

1. Ten-thousandth balance:

 Weighing accuracy: 10−4 g;

2. Blast drying box:

 The temperature error: ± 1℃;

3. Scanning electron microscopy (S4800):

 Electronic image movement: ± 12 µm;

4. XRD (D8 ADVANCE DAVINCI):

 Precision of Angle: ± 0.0001°;

5. DSC (DSC214):

 Temperature repeatability: ± 0.01 ℃ (Standard metal);

 Enthalpy sensitivity: 0.1 µW

 Enthalpy precision: ± 0.05% (Standard metal);

6. TGA (NETZSCH5, TGA 8000-Spectrum two-Clarus SQ8T):

 Thermal drift: < 10 µg;

 Weighing accuracy: 10 ppm;

7. Thermal conductivity tester (TPS 2500 S):

 Measurement error: < 3%;

 Thermal diffusion coefficient: < 5%;

 Volumetric specific heat: < 7%;

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, WT., Ye, WB., Du, J. et al. Improvement of acid modification and its effect on the adsorption of stearic acid into sepiolite. J Therm Anal Calorim 147, 3025–3032 (2022). https://doi.org/10.1007/s10973-021-10633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10633-5

Keywords

Navigation