Skip to main content
Log in

Kinetics and mechanism of plasticized poly(vinyl chloride) films autohesion. Interface effect

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetics of bis(2-diethylhexyl)phthalate plasticized poly(vinyl chloride) (PVC) autohesion development was monitored at 373 K, 393 K, 413 K. Three regions of bonding kinetics were observed (first time) at all temperatures: adhesion increase after initial contact, constant adhesion plateau, long contact time adhesion increase. Initial adhesion increase resulted from plasticizer diffusion into interface and capillary attraction, activation energy, Ea = 66 kJ mol−1. Plateau in adhesion kinetics is consistent with polymer segments diffusion across interface; duration decreased with temperature increase, yielding Ea = 113 kJ mol−1. Adhesion at plateau increased linearly with temperature increase, indicating Van der Waals attraction between the PVC macromolecules in interface. Final adhesion increase was stipulated by macromolecular segments diffusion into and entanglement within interface, Ea = 109 kJ mol−1. Scanning electron and optical microscopy confirmed plasticizer and polymer diffusion into interface (width up to 3.5 µm). PVC segments diffusivities in plasticized PVC were derived: 1.8 × 10−13 cm2 s−1 at 373 K, 1.1 × 10−12 cm2 s−1 at 393 K, 6.3 × 10−12 cm2 s−1 at 413 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nass LI, Heiberger CA., ed. Encyclopedia of PVC. 2nd ed. V. 1. Resin Manufacture and Properties. New York, Hong Kong: Marcel Dekker, Inc.; 1992.

  2. Correa H. Innovation in polymer adhesion-plastic packaging. J Res Updates Pol Sci. 2020;9:24–31. https://doi.org/10.6000/1929-5995.2020.09.02.

    Article  CAS  Google Scholar 

  3. Campion RP. The influence of structure on autohesion (self-tack) and other forms of diffusion into polymers. J Adhesion. 1974;7:1–23. https://doi.org/10.1080/00218467508078895.

    Article  Google Scholar 

  4. Awaja F. Autohesion of polymers. Polymer. 2016;97:387–407. https://doi.org/10.1016/j.polymer.2016.05.043.

    Article  CAS  Google Scholar 

  5. Chung DDL. Review. Joints obtained by soldering, adhesion, autohesion and fastening, studied by electrical resistance measurement. J Mater Sci. 2001;36:2591–6. https://doi.org/10.1023/A:1017998922281.

    Article  CAS  Google Scholar 

  6. Sharpe LH. What exactly is the physical or chemical process that makes adhesive tape sticky? Sci American. 1997;July 14. https://www.scientificamerican.com/article/what-exactly-is-the-physi/.

  7. Ghanem A, Lang Y. Introduction to polymer adhesion. Halifax, Nova Scotia, Canada: Department of process engineering and applied science, Dalhousie University; 2017. https://www.researchgate.net/profile/Yujie_Lang/research.

  8. Voyutskii SS. Autohesion and adhesion of high polymers. Pol. Review Ser. 4, Transl. from Russian by Kaganoff S, Vakula VL, Transl. Ed. New York: Interscience Publ.; 1963. OCLC No. 301221257.

  9. Sperling LH. Introduction to Physical Polymer Science, 4th ed. Hoboken, New Jersey: Wiley; 2006. https://doi.org/10.1002/0471757128.

  10. Maugis D. Adherence and fracture mechanics. In: Lee L-H., editor. Adhesive Bonding. New York: Plenum Press; 1991. pp. 313–94. https://doi.org/10.1007/978-1-4757-9006-1.

  11. Yaqoob MA, de Rooij MB, Schipper DJ. On the transition from bulk to ordered form of water: a theoretical model to calculate adhesion force due to capillary and van der Waals interactions. Tribol Lett. 2013;49:491–9. https://doi.org/10.1007/s11249-012-0090-x.

    Article  CAS  Google Scholar 

  12. Krongauz VV, Schmid SR, Vandeberg JT. Imaging in evaluation of polymer coatings adhesion to glass at high humidity. Progr Org Coat. 1995;26(2–4):145–62. https://doi.org/10.1016/0300-9440(95)00565-X.

    Article  CAS  Google Scholar 

  13. Kim SH. Disjoining pressure and capillary adhesion. In: Bhushan B, editor. Encyclopedia of Nanotechnology. Dordrecht : Springer; 2012. https://doi.org/10.1007/978-90-481-9751-4_212.

    Chapter  Google Scholar 

  14. Charlaix E, Crassous J. Adhesion forces between wetted solid surfaces. J Chem Phys. 2005;122(18):184701. https://doi.org/10.1063/1.1886732.

    Article  CAS  PubMed  Google Scholar 

  15. Zosel A. Adhesion and tack of polymers: influence of mechanical properties and surface tensions. Coll Pol Sci. 1985;263:541–53. https://doi.org/10.1007/BF01421887.

    Article  CAS  Google Scholar 

  16. Zosel A. Studies of the wetting kinetics of liquid drops on solid surfaces. Coll Pol Sci. 1993;271:680–7. https://doi.org/10.1007/BF00652830.

    Article  CAS  Google Scholar 

  17. Parsegian VA, Ninham BW. Temperature dependent van der Waals forces. Biophys J. 1970;10(7):664–74. https://doi.org/10.1016/S0006-3495(70)86327-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev. 1988;88:927–41. https://doi.org/10.1021/cr00088a006.

    Article  Google Scholar 

  19. Lee LH. Lifshitz, Van der Waals interactions, adherence and fracture mechanics. In: Lee L-H, editor. Adhesive Bonding. New York: Plenum Press; 1991. p. 9–14. https://doi.org/10.1007/978-1-4757-9006-1.

    Chapter  Google Scholar 

  20. Lee L-H. Diffusion mechanism. In: Lee L-H, editor. Adhesive bonding. New York: Plenum Press; 1991. p. 2–8. https://doi.org/10.1007/978-1-4757-9006-1.

    Chapter  Google Scholar 

  21. Campion RP. The Influence of Structure on Autohesion (Self-Tack) and other forms of Diffusion into Polymers. J Adhes. 1975;7(1):1–23. https://doi.org/10.1080/00218467508078895.

    Article  CAS  Google Scholar 

  22. Voyutskii SS, Vakula VL. The role of diffusion phenomena in polymer-to-polymer adhesion. J Appl Polym Sci. 1963;7:475–91. https://doi.org/10.1002/app.1963.070070207.

    Article  CAS  Google Scholar 

  23. de Gennes PG, Leger L. Dynamics of entangled polymer chains. Ann Rev Phys Chem. 1982;33:49–61. https://doi.org/10.1146/annurev.pc.33.100182.000405.

    Article  Google Scholar 

  24. de Gennes PG. Polymers at an interface 2. Interaction between two plates carrying adsorbed polymer layers. Macromolecule. 1982;15:492–500. https://doi.org/10.1021/ma00230a055.

    Article  Google Scholar 

  25. Brochard F, de Gennes PG. Polymer-polymer interdiffusion. Europhys Lett. 1986;1(5):221–4. https://doi.org/10.1209/0295-5075/1/5/004.

    Article  CAS  Google Scholar 

  26. Brochard-Wyart F. Kinetics of polymer-polymer interdiffusion. In: Lee L-H, editor. Fundamentals of adhesion. Boston, MA: Springer; 1991. p. 181–206. https://doi.org/10.1007/978-1-4899-2073-7_6.

    Chapter  Google Scholar 

  27. Brochard F, Jouffroy J, Levinson P. Polymer-polymer interdiffusion in melts. Macromol. 1983;16(10):1638–41. https://doi.org/10.1021/ma00244a016.

    Article  CAS  Google Scholar 

  28. Wu S. Chain structure and entanglement. J Polym Sci Part B: Pol Phys. 1989;27:723–41. https://doi.org/10.1002/polb.1989.090270401.

    Article  CAS  Google Scholar 

  29. Yukioka S, Nagato K, Inoue T. Ellipsometric studies on mutual diffusion and adhesion development at polymer-polymer interfaces. Polymer. 1992;33(6):1171–6. https://doi.org/10.1016/0032-3861(92)90761-K.

    Article  CAS  Google Scholar 

  30. Lee L-H. New perspective in polymer adhesion mechanism-importance of diffusion and molecular bonding in adhesion. In: Norland EA, Liechi KM, editors. Adhesives Engineering. Proc. SPIE, Vol 1999; 1993.

  31. Jabbari E, Peppas NA. Polymer-polymer interdiffusion and adhesion. J Macromol Sci Part C: Pol Rev. 1994;C34(2):205–41. https://doi.org/10.1080/15321799408009635.

    Article  CAS  Google Scholar 

  32. Welp KA, Wool RP, Satija SK, Pispas S, Mays J. Dynamics polymer interdiffusion: the ripple experiment. Macromol. 1998;31:4915–25. https://doi.org/10.1021/ma971692n.

    Article  CAS  Google Scholar 

  33. Zhang H, Lamnawar K, Maazouz A. Rheological modeling of the diffusion process and the interphase of symmetrical bilayers based on PVDF and PMMA with varying molecular weights. Rheol Acta. 2012;51:691–711. https://doi.org/10.1021/ma301620a.

    Article  CAS  Google Scholar 

  34. Gurney R, Henry A, Schach R, Linder A, Creton C. Molecular weight dependence of interdiffusion and adhesion of polymers at short contact times. Langmuir. 2017;33:1670–8. https://doi.org/10.1021/acs.langmuir.6b03972.

    Article  CAS  PubMed  Google Scholar 

  35. Boiko YM. Interdiffusion of polymers with glassy bulk. Coll Pol Sci. 2011;289:1847–54. https://doi.org/10.1007/s00396-011-2508-7.

    Article  CAS  Google Scholar 

  36. Wu DY, Meure S, Solomon D. Self-healing polymeric materials: a review of recent developments. Prog Polym Sci. 2008;33:479–522. https://doi.org/10.1016/j.progpolymsci.2009.02.001.

    Article  CAS  Google Scholar 

  37. Ge T, Robbins MO, Perahia D, Grest GS. Healing of polymer interfaces: interfacial dynamics, entanglement and strength. Phys Rev. 2014;90E90:012602. https://doi.org/10.1103/PhysRevE.90.012602.

    Article  CAS  Google Scholar 

  38. Mocellin A, Regnier G, Peixinho J, Schmitt N, Roux, S. Adhesion mechanism at the interface between two polytetrafluoroethylene (PTFE) films. Proc. 24ème Congrès Français de Mécanique, Brest, 26 au 30 Août; 2019. https://hal.archives-ouvertes.fr/hal-02298357; https://docplayer.net/141782051-Adhesion-mechanisms-at-the-interface-between-two-polytetrafluoroethylene-ptfe-films.html.

  39. Regnier G, Le Corre S. Modeling of thermoplastic welding In: Boyard N, editor. Heat transfer in polymer composite materials: forming processes. Inc. Hoboken, NJ, London, UK: Wiley; 2016. pp. 235–68. https://doi.org/10.1002/9781119116288.ch8; https://hal.archives-ouvertes.fr/hal-02591944.

  40. Wool RP, O’Connor KM. A theory of crack healing in polymers. J Appl Phys. 1981;52:5953–63. https://doi.org/10.1063/1.328526.

    Article  CAS  Google Scholar 

  41. Ge T, Pierce F, Perahia D, Grest GS, Robbins MO. Molecular dynamics simulations of polymer welding: Strength from interfacial entanglements. Phys Rev Lett. 2013;110:098301. https://doi.org/10.1103/PhysRevLett.110.098301.

    Article  CAS  PubMed  Google Scholar 

  42. Zaenudin M, Mohammed MN, Al-Zubaidi A. Molecular dynamics of welding and joining process: an overview. Int J Eng Technol. 2018;7(4):3816–25. https://doi.org/10.14419/ijet.v7i4.16610.

    Article  CAS  Google Scholar 

  43. Baldan A. Adhesion phenomena in bonded joints. Int J Adh Adh. 2012;38:95–116. https://doi.org/10.1016/j.ijadhadh.2012.04.007.

    Article  CAS  Google Scholar 

  44. Hamaker HC. The London-van der Waals attraction between spherical particles. Physica. 1937;4(10):1058–72. https://doi.org/10.1016/S0031-8914(37)80203-7.

    Article  CAS  Google Scholar 

  45. Atkins P, de Paula J. Atkins physical chemistry. 8th ed. New York, NY: Freeman W. H. & Co.; 2006. p. 620–51.

    Google Scholar 

  46. Ungureanu D, Taranu N, Lupastanu V, Rosu A-R, Mihai P. The adhesion theories applied to adhesively bonded joints of fiber reinforced polymer composite elements. Bull Inst Polytech Jassy Construct Architect Sect. 2016;62(66):37–45. https://pdfs.semanticscholar.org/ab5d/1858baefd79836d9273989f89c695a54d8e3.pdf

  47. Patrikeev GA. Basic problems in the theory of bond strength between plies of a rubber article. Rubber Chem Technol. 1959;32(4):1192–8. https://doi.org/10.5254/1.3542479.

    Article  Google Scholar 

  48. Rubinstein M, Colby RH. Polymer Physics. New York: Oxford University Press; 2006.

    Google Scholar 

  49. Grosberg AYu, Khokhlov AR. Statistical Physics of Macromolecules, AIP Ser. In: Polymers and Complex Materials, Transl. by Antonov YuA. Woodbury, New York: AIP Press; 1994.

  50. Krongauz VV, Rabinovitch BS. Competitive collisional activation in vibrational energy transfer with cyclopropane-1t1-2,2–d2, a three-channel system. Chem Phys. 1982;67:201–12. https://doi.org/10.1016/0301-0104(82)85034-9.

    Article  CAS  Google Scholar 

  51. Krongauz VV, Rabinovitch BS. Vibrational energy transfer efficiency in a three-channel thermal unimolecular system. Temperature dependence. J Chem Phys. 1983;78(6):3872–80. https://doi.org/10.1063/1.445165.

    Article  CAS  Google Scholar 

  52. Wu S, Chung H-K. Diffuse interface between polymers: structure and kinetics. J Pol Sci Pol Phys. 1986;24:143–59. https://doi.org/10.1002/polb.1986.180240115.

    Article  CAS  Google Scholar 

  53. Kaelble DH. Rheology of polymers used as adhesives. In: Patrick RL, editor. Treatise of Adhesion and Adhesives. V.1. Theory. New York: Marcel Dekker; 1967. pp. 169–232.

  54. Yoo JN, Sperling LH, Glinka CJ, Klein A. Characterization of film formation from polystyrene latex particles via SANS. 1. Moderate molecular weight. Macromolecule. 1990;23:3962–7. https://doi.org/10.1021/ma00219a017.

    Article  CAS  Google Scholar 

  55. Kim KD, Sperling LH, Klein A, Hammouda B. Reptation time, temperature, and cosurfactant effects on the molecular interdiffusion rate during polystyrene latex film formation. Macromol. 1994;27:6841–50. https://doi.org/10.1021/ma00101a024.

    Article  CAS  Google Scholar 

  56. Ng SH, Tjeung RT, Wang ZF, Lu ACW, Rodriguez I, de Rooij NF. Thermally activated solvent bonding of polymers. Microsyst Techn. 2008;14(6):753–9. https://doi.org/10.1007/s00542-007-0459-1.

    Article  CAS  Google Scholar 

  57. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28:1223–70. https://doi.org/10.1016/S0079-6700(03)00045-5.

    Article  CAS  Google Scholar 

  58. Feinerman AE, Lipatov TS, Minkov VI. Interfacial interactions in polymers: the dependence of the measured surface tension of solid polymer on the surface tension of wetting liquid. J Adhesion. 1997;61:37–54. https://doi.org/10.1080/00218469708010515.

    Article  CAS  Google Scholar 

  59. Imoto T, Hosokawa H. Effects of pressure to adhesion. Kolloid-Z u Z Polymere. 1966;208:153–6. https://doi.org/10.1007/BF01500983.

    Article  CAS  Google Scholar 

  60. Stacer RG, Schreuder-Stacer HL. Time-dpendent adhesion. Int J Fract. 1989;39:201–16. https://doi.org/10.1007/BF00047450.

    Article  CAS  Google Scholar 

  61. Hamed GR. Tack and green strength of NR. SBR and NR/SBR blends, Rubber Chem Tech. 1981;54(2):403–14. https://doi.org/10.5254/1.3535813.

    Article  CAS  Google Scholar 

  62. Hamed GR, Shieh CH. Flow criterion for elastomer tack. Rubber Chem Tech. 1982;55(5):1469–81. https://doi.org/10.5254/1.3535943.

    Article  CAS  Google Scholar 

  63. Hamed GR. Tack and green strength of elastomeric materials. Rubber Chem Tech. 1981;54(3):576–95. https://doi.org/10.5254/1.3535821.

    Article  CAS  Google Scholar 

  64. Williams ML, Kelley FN. The interaction between polymeric structure, deformation and fracture. In: Chompff AJ, editor. Polymer Networks. New York: Springer Science & Business Media; 1971. p. 193–218.

    Chapter  Google Scholar 

  65. Kaelble DH. Peel adhesion: influence of surface energy and adhesive rheology. J Adhes. 1969;1(2):102–23. https://doi.org/10.1080/00218466908078882.

    Article  CAS  Google Scholar 

  66. Kaelble DH. Rheology of adhesion. J Macromol Sci Rev Macromol Chem. 1971;6(1):85–112. https://doi.org/10.1080/15321797108068157.

    Article  CAS  Google Scholar 

  67. Anand JN. RE: contact theory of adhesion. J Adhes. 1973;5(3):265–97. https://doi.org/10.1080/00218467308075023.

    Article  CAS  Google Scholar 

  68. Korenevskaya NS, Laurent’ev VV, Yagnyatinskaya SM, Rayevskii VG, Voyutskii SS. The effect of contact completeness on the strength of adhesive joins of elastomer-solid substrate. Polymer Sci USSR. 1966;8(7):1372–7. https://doi.org/10.1016/0032-3950(66)90356-X.

    Article  Google Scholar 

  69. Wool RP. Molecular aspects of tack. Rubber Chem Technol. 1984;57(2):307–19. https://doi.org/10.5254/1.3536010.

    Article  CAS  Google Scholar 

  70. ASTM D3354–15, Standard Test Method for Blocking Load of Plastic Film by the Parallel Plate Method. West Conshohocken, PA: ASTM International; 2015, www.astm.org; https://doi.org/10.1520/D3354-15 .

  71. Wool RP. Polymer interfaces: structure and strength. New York, Munich, Cincinati: Hanser Publication; 1994.

    Google Scholar 

  72. Prager S, Tirrell M. Polymer-polymer interfaces. J Chem Phys. 1981;75:5194–8. https://doi.org/10.1063/1.441871.

    Article  CAS  Google Scholar 

  73. Vasenin RM. Problems in the diffusion theory of adhesion of polymers. In: Adhesion: Fundamentals and Practice. A report of an International Conference held at the University of Nottingham, England, 20–22 of September, 1966. London: McLaren & Sons; 1969. pp. 2–29.

  74. Ben-Gal I. Outlier detection. In: Maimon O, Rockach L, editors. Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, 2nd ed. New York, Dordrecht, Heidelberg, London: Springer; 2005; Part I. pp. 117–133. https://doi.org/10.1007/978-0-387-09823-4.

  75. Crank J, Park GS. Diffusion in polymers. London: Academ Press; 1968.

    Google Scholar 

  76. Krongauz VV. Diffusion in polymers dependence on crosslink density. Eyring approach to mechanism. J Therm Anal Calorim. 2010;102:435–45. https://doi.org/10.1007/s10973-010-0922-6.

    Article  CAS  Google Scholar 

  77. Krongauz VV, Bennett SE, Ling MTK. Kinetics of water vapor diffusion in resins. J Therm Anal Calorim. 2016;125:231–43. https://doi.org/10.1007/s10973-016-5437-3.

    Article  CAS  Google Scholar 

  78. Krongauz VV. Compensation effect: sublimation, diffusion in polymers. Polym Degrad J Therm Anal Calorim. 2019;138:3425–44. https://doi.org/10.1007/s10973-019-08851-z.

    Article  CAS  Google Scholar 

  79. Krongauz VV, Ling MTK, Woo L, Purohit U. Kinetics and thermodynamics of dihydro-dibenz [b, f] azepine derivatives sublimation. Thermochim Acta. 2007;457(1–2):35–40. https://doi.org/10.1016/j.tca.2007.02.019.

    Article  CAS  Google Scholar 

  80. Krongauz VV. Crosslink density dependence of polymer degradation kinetics: photocrosslinked acrylates. Thermochim Acta. 2010;503–504:70–84. https://doi.org/10.1016/j.tca.2010.03.011.

    Article  CAS  Google Scholar 

  81. Militky J. The chemistry, manufacture and tensile behaviour of polyester fibers. In: Bunsel AR, editor. Handbook of tensile properties of textile and technical fibers. Woodhead Publ. Ltd.; 2009. pp. 223–314.

  82. Kawaguchi D, Tanaka K, Kajiyama T, Takahara A, Tasaki S. Mobility gradient in surface region of monodisperse polystyrene films. Macromolecule. 2003;36(4):1235–40. https://doi.org/10.1021/ma025667f.

    Article  CAS  Google Scholar 

  83. Berg JC. Introduction to Interfaces and Colloids; the Bridge to Nanoscience. New Jersey, London, Singapore, Beijing, Shanghai, Hog Kong, Taipei, Chennai: World Scientific Publ. Co. Ltd.; 2009. pp. 23–106.

  84. Adamson AW. Physical chemistry of surfaces. 5th ed. New York: Wiley; 1990. p. 484.

    Google Scholar 

  85. U.S. Coast Guard, Department of Transportation. CHRIS –Hazardous Chemical Data. Vol. II. Washington, D.C.: U.S. Government Printing Office; pp. 1984–1985. OCLC No. 63342839.

  86. Crank J. The mathematics of diffusion. New York: Oxford University Press; 1989.

    Google Scholar 

  87. Park GS, Saleem M. Diffusion of additives and plasticizers in poly(vinyl chloride) V. Diffusion of n-hexadecane and DDT in various poly(vinyl chloride)/dialkylphthalate compositions. J Membr Sci. 1984;18:177–85. https://doi.org/10.1016/S0376-7388(00)85032-2.

    Article  CAS  Google Scholar 

  88. Griffiths PJF, Krikor KG, Park GS. Diffusion of additives and plasticizers in poly(vinyl chloride)-iii diffusion of three phthalate plasticizers in poly(vinyl chloride). In: Kresta JE, editor. Polymer Additives. Polymer Science and Technology. V 26. Boston, MA: Springer; 1984. pp. 249–60. https://doi.org/10.1007/978-1-4613-2797-4_19.

  89. Storey RF, Mauritz KA, Cole BB. Diffusion of bis(2-ethylhexyl) phthalate above and below the glass transition temperature of poly(vinyl chloride). Macromolecule. 1991;24(2):450–4. https://doi.org/10.1021/ma00002a017.

    Article  CAS  Google Scholar 

  90. Dole P, Feigenbaum AE, De La Cruz C, Pastorelli S, Paseiro P, Hankemeier T. Typical diffusion behaviour in packaging polymers—application to functional barriers. Food Additiv Contam. 2006;3(2):202–11. https://doi.org/10.1080/02652030500373661.

    Article  CAS  Google Scholar 

  91. Frisch HL. The time lag in diffusion. J Phys Chem. 1957;61:93–5. https://doi.org/10.1021/j150547a018.

    Article  CAS  Google Scholar 

  92. Price FP, Gilmore PT, Thomas EL, Laurence RL. Polymer/polymer diffusion I Experimental technique. J Pol Sci Pol Symp. 1978;63:33–44. https://doi.org/10.1002/polc.5070630107.

    Article  CAS  Google Scholar 

  93. Skewis JD. Self-diffusion coefficients and tack of some rubbery polymers. Rubber Chem Technol. 1966;39(2):217–25. https://doi.org/10.5254/1.3544835.

    Article  CAS  Google Scholar 

  94. Bueche F, Cashin WM, Debye P. The measurement of self-diffusion in solid polymers. J Chem Phys. 1952;20:1956–8. https://doi.org/10.1063/1.1700348.

    Article  CAS  Google Scholar 

  95. Ju RTC, Nixon PR, Patel MV. Diffusion coefficients of polymer chains in the diffusion layer adjacent to a swollen hydrophilic matrix. J Pharm Sci. 1997;86(11):1293–8. https://doi.org/10.1021/js970053n.

    Article  CAS  PubMed  Google Scholar 

  96. Duda JL. Molecular diffusion in polymeric systems. Pure Appl Chem. 1985;57(11):1681–90. https://doi.org/10.1351/pac198557111681.

    Article  CAS  Google Scholar 

  97. Tung MT. Direct galvanic metallization of insulating substrates: mechanism and applications for microstructuring. Doctoral Thesis, Fakultät der Heinrich-Heine-Universität Düsseldorf; 2003.

  98. Nagireddy NR, Mohan YM, Varaprasad K, Ravindra S, Vimala K, Raju KM. Surface treatment of plasticized poly(vinyl chloride) to prevent plasticizer migration. J Appl Pol Sci. 2010;115:1589–97. https://doi.org/10.1002/app.31157.

    Article  CAS  Google Scholar 

  99. Michler GH, Lebek W. Electron microscopy of polymers. In: Guo Q, editor. Polymer Morphology: Principles, Characterization, and Processing. Hoboken, New Jersey: Wiley; 2016. pp. 37–54. https://www.wiley.com/en-us/9781118452158; https://doi.org/10.1002/9781118892756; https://doi.org/10.1002/9781118892756.ch3.

  100. Krongauz VV, Trifunac AD, editors. Processes in Photoreactive Polymers. 1st ed. Dordrecht: Springer; 1995. https://doi.org/10.1007/978-1-4615-1767-2.

    Book  Google Scholar 

  101. Theodorou DN. Molecular simulations of sorption and diffusion. In: Neogi P, editor. Diffusion in Polymers. New York, Basel, Hong Kong: Marcel Dekker, Inc.; 1996.

  102. Good RJ. Intermolecular and interatomic forces. In: Patrick RL, editor. Treatise on Adhesion and Adhesives, V.1. Theory. New York: Marcel Dekker; 1967. pp. 9–68

  103. Ji H, de Gennes PG. Adhesion via connector molecules: the many-stitch problem. Macromolecule. 1993;26:520–5. https://doi.org/10.1021/ma00055a018.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The support of this work by ICU Medical, Inc. Company, Austin, USA and particularly by Dr. Peter Kramer and Dr. Akanksha Nagpal is gratefully acknowledged. Discussions of surface interactions and capillary adhesion with Danielle M. Krongauz, The Weitzman Institute of Science were particularly helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Krongauz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krongauz, V.V. Kinetics and mechanism of plasticized poly(vinyl chloride) films autohesion. Interface effect. J Therm Anal Calorim 147, 4177–4195 (2022). https://doi.org/10.1007/s10973-021-10832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10832-0

Keywords

Navigation